INTERACTION STUDIES OF AMINO ACIDS IN AQUEOUS SODIUM BROMIDE SOLUTIONS AT DIFFERENT TEMPERATURE

Authors

  • Dr. Yasmin Akhtar Al-Falah University, Dhauj, Faridabad, Haryana, India, Department of Chemistry, University of Tabuk,Tabuk, Saudi Arabia

DOI:

https://doi.org/10.29121/granthaalayah.v5.i10.2017.2292

Keywords:

Valine and L- Phenylalanine, Aqueous Sodium Bromide, Partial MolalVolume, Partial Molal Adiabatic Compressibility at Infinite Dilution, Transfer Volume;A and B Coefficients

Abstract [English]

Densities, ultrasonic velocities and viscosities of L- Valine and L- Phenylalanine in aqueous sodium bromide (0.00, 0.025 and 0.05) m solutions have been determined experimentally at 308 and 313 K. The results obtained from density ultrasonic velocity and viscosity measurement have been used to calculate the apparent molal volume, фv, apparent molal, adiabatic compressibility ф Ks, partial molal volume ф0v at infinite dilution, partial molal adiabatic compressibility ф0Ks at infinite dilution, transfer volume ∆ф(tr), experimental slopes Sv and SKs,Falkenhagen coefficient A and  Jones-Dole B coefficient. The results are discussed in terms of the dehydration effect of the sodium bromide upon the amino acids and weak solute- solute and strong solute- solvent interactions. The properties of these amino acids in water and water + sodium bromide solution systems are discussed in terms of the charge, size and hydrogen bonding effect.

Downloads

Download data is not yet available.

References

Y. Akhtar, S. F. Ibrahim, Arabian J. Chem. 4 (2011) 487-490 DOI: https://doi.org/10.1016/j.arabjc.2010.07.009

F. J. Millero, A. L. Surdo and C. Shiv, J. Phys. Chem. 87 (1978) 784. DOI: https://doi.org/10.1021/j100496a007

Vishnu D., Y. Akhtar, J. D.Pandey, ActaAcoust. 84(1998) 976.

Y. Akhtar, Fluid Phase Equil. 258 (2007)125. DOI: https://doi.org/10.1016/j.fluid.2007.01.043

X. Jiang, C. Zhu and Y. Ma, J. Chem. Thermodyn. 71(2014)50-63. DOI: https://doi.org/10.1016/j.jct.2013.11.002

M. S. Hussain, T.K Kabriaz, M. N. Islam and M. E. Haque, J. Chem. Thermodyn.

(2014)6-13.

Riyazuddin and M. A. Usmani, Thermochemica. Acta, 527 (2012),112-117. DOI: https://doi.org/10.1016/j.tca.2011.10.013

C. Zhu and X. Jiang, Y. Ma, J. Chem. Thermodyn. 71(2014)50-63.

Yasmin Akhtar, J. International AcademicResearch Multidis. 2 (5) (2014)

-700.

Yasmin Akhtar, International Journal "Advanced Materials Research,

(2014) 215-220.

Y. Akhtar, Indian J. Res. 5(8)2016, 287-292.

Y. Akhtar, Chemical Sci. International J. 17 (2) (2016) 1-7. DOI: https://doi.org/10.9734/CSJI/2016/28872

T. S. Banipal and G. Singh Indian J. Chem. 3A (2000)1011.

A. P. Mishra and Gautum S. K. , Indian J. Chem. 40A (2001), 100 and D. L. Q.

Yu, Y. Y. Wang and D. Sun Indian J. Chem. 41A (2002)1126.

R. J. Laurich, C. R. Torok and M. J. Tubergen J. Phys. Chem.A 106 (2002)8013.

K. Karl, B. Alex and N. Kishore, J. Chem .Thermodyn. 34 (2002) 319. DOI: https://doi.org/10.1006/jcht.2001.0855

G. Jones and M. Dole, J. Am. Chem. Soc. 51 (1929) 2950. DOI: https://doi.org/10.1021/ja01385a012

H. Fakenhagen and E. L. Vernon, Z. Phys. 33 (1932) 140.

M. J. Lee, T. K. Lin, J. Chem. Eng. Data 45(1995) 336-341. DOI: https://doi.org/10.1021/je00017a074

A. W. Hakin, M. M. Duck, J. L. Marty, K. E. Preuss, J. Chem. Soc. Faraday Trans.

(1994)2027-2037.

M. Iqbal, M. Mateullah Can. J. Chem. 68 1990)7. DOI: https://doi.org/10.1139/v90-113

A. P. Mishra and S. K. Gautam, Indian J. Chem. 40A (2001) 100.

H. L. Friedman and C. V. Krishnan, water a comprehensive Treatise , vol. 3

New York, 1973.

Downloads

Published

2017-10-31

How to Cite

Akhtar, Y. (2017). INTERACTION STUDIES OF AMINO ACIDS IN AQUEOUS SODIUM BROMIDE SOLUTIONS AT DIFFERENT TEMPERATURE. International Journal of Research -GRANTHAALAYAH, 5(10), 160–167. https://doi.org/10.29121/granthaalayah.v5.i10.2017.2292