APPROACHES TO CONTROL BIOFOULING IN POTABLE WATER DISTRIBUTION NETWORKS
DOI:
https://doi.org/10.29121/granthaalayah.v13.i3.2025.6383Keywords:
Biofouling, WaterAbstract [English]
Water is a critical resource that sustains life and its availability should be secured.The freshwater is contaminated due to human activities and consequently is enriched in foreign and potentially dangerous species. These pollutants can be classified into biological components that include microbes (bacteria, viruses and fungi), inorganic compounds (radioactive materials and heavy metals), and organic compounds (drugs, soaps, pesticides, fertilizers, and oils)are not only harmful to human health and the environment but also induce changes in natural aqueous habitats and organisms thus affecting the water quality and ecological balance.
Fulfilling the demand for clean drinking water to the general public has been a challenging task in developing countries. Among various water treatment technologies, the utilization of nano-materials and nanostructures has received significant consideration due to their sustainability and stability. The dimensions of nanomaterials impart exceptional chemical and physical properties, such as multivalent interactions with bio-molecular and cellular systems. This paves the way to treat biofouling of water with nanomaterial due to their antimicrobial properties and reduces the possibility of harmful disinfection by-products (DBPs) formation. Different types of nanomaterials that can act as nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes, nanomembranes and nanoparticles (nanocelluloses) provide an efficient methodology for solving water bio fouling problems. These highly efficient nano-materials owing to the high aspect ratio, surface charge, surface area and mechanical strength can serve as remediation for biofouling of water. However, the major issue with nano-materials synthesized conventionally is their toxicity although the synthesis of nanomaterials using green routes can serve as an answer to this problem
Downloads
References
Abdulrahman, J. N. (2022). Isolation and Identification of Salmonella spp. from Chicken Meat in Kurdistan Region. Sciences, 20(1), 111–119. https://doi.org/10.32649/ajas.2022.175492 DOI: https://doi.org/10.32649/ajas.2022.175492
Abid, N., Khan, A. M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan, Q., & Maqbool, M. (2022). Synthesis of Nanomaterials Using Various Top-Down and Bottom-Up Approaches, Influencing Factors, Advantages, and Disadvantages: A Review. Advances in Colloid and Interface Science, 300, 102597. https://doi.org/10.1016/j.cis.2021.102597 DOI: https://doi.org/10.1016/j.cis.2021.102597
Abraham, W. R. (2011). Megacities as Sources for Pathogenic Bacteria in Rivers and Their Fate Downstream. International Journal of Microbiology, 2011, 798292. https://doi.org/10.1155/2011/798292 DOI: https://doi.org/10.1155/2011/798292
Adeleye, A. S., Wang, X., Wang, F., Hao, R., Song, W., & Li, Y. (2018). Photoreactivity of Graphene Oxide in Aqueous System: Reactive Oxygen Species Formation and Bisphenol A Degradation. Chemosphere, 195, 344–350. https://doi.org/10.1016/j.chemosphere.2017.12.095 DOI: https://doi.org/10.1016/j.chemosphere.2017.12.095
Adeola, A. O., & Nomngongo, P. N. (2022). Advanced Polymeric Nanocomposites for Water Treatment Applications: A Holistic Perspective. Polymers, 14(12), 2462. https://doi.org/10.3390/polym14122462 DOI: https://doi.org/10.3390/polym14122462
Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-Controlled Silver Nanoparticles Synthesized over the Range 5–100 nm Using the Same Protocol and their Antibacterial Efficacy. RSC Advances, 4(8), 3974–3983. https://doi.org/10.1039/C3RA44507K DOI: https://doi.org/10.1039/C3RA44507K
Ahmad, J., Naeem, S., Ahmad, M., Usman, A. R., & Al-Wabel, M. I. (2019). A Critical Review on Organic Micropollutants Contamination in Wastewater and Removal Through Carbon Nanotubes. Journal of Environmental Management, 246, 214–228. https://doi.org/10.1016/j.jenvman.2019.05.152 DOI: https://doi.org/10.1016/j.jenvman.2019.05.152
Akhavan, O., Ghaderi, E., & Esfandiar, A. (2011). Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation. The Journal of Physical Chemistry B, 115(19), 6279–6288. https://doi.org/10.1021/jp200686k DOI: https://doi.org/10.1021/jp200686k
Akhavan, O., & Ghaderi, E. (2010). Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano, 4(10), 5731–5736. https://doi.org/10.1021/nn101390x DOI: https://doi.org/10.1021/nn101390x
Akhil, K., Jayakumar, J., Gayathri, G., & Khan, S. S. (2016). Effect of Various Capping Agents on Photocatalytic, Antibacterial and Antibiofilm Activities of ZnO Nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 160, 32–42. https://doi.org/10.1016/j.jphotobiol.2016.03.015 DOI: https://doi.org/10.1016/j.jphotobiol.2016.03.015
Alekseeva, O. V., Bagrovskaya, N. A., & Noskov, A. V. (n.d.). Polystyrene Film Composites Filled with Fullerenes (Doctoral Dissertation, Sumy State University).
Ali, I., Peng, C., Khan, Z. M., Naz, I., Sultan, M., Ali, M., Abbasi, I. A., Islam, T., & Ye, T. (2019). Overview of Microbes Based Fabricated Biogenic Nanoparticles for Water and Wastewater Treatment. Journal of Environmental Management, 230, 128–150. https://doi.org/10.1016/j.jenvman.2018.09.073 DOI: https://doi.org/10.1016/j.jenvman.2018.09.073
Anirudhan, T. S., & Deepa, J. R. (2017). Nano-Zinc Oxide Incorporated Graphene Oxide/Nanocellulose Composite for the Adsorption and Photocatalytic Degradation of Ciprofloxacin Hydrochloride from Aqueous Solutions. Journal of Colloid and Interface Science, 490, 343–356. https://doi.org/10.1016/j.jcis.2016.11.042 DOI: https://doi.org/10.1016/j.jcis.2016.11.042
Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2019). Remediation of Wastewater using Various Nano-Materials. Arabian Journal of Chemistry, 12(8), 4897–4919. https://doi.org/10.1016/j.arabjc.2016.10.004 DOI: https://doi.org/10.1016/j.arabjc.2016.10.004
Aoki, Y., Kunitake, T., & Nakao, A. (2005). Sol–Gel Fabrication of Dielectric HfO2 Nano-Films ; Formation of Uniform, Void-Free Layers and their Superior Electrical Properties. Chemistry of Materials, 17(2), 450–458. https://doi.org/10.1021/cm048971r DOI: https://doi.org/10.1021/cm048971r
Aqel, A., Abou El-Nour, K. M., Ammar, R. A., & Al-Warthan, A. (2012). Carbon Nanotubes, Science and Technology Part (I) Structure, Synthesis and Characterisation. Arabian Journal of Chemistry, 5(1), 1–23. https://doi.org/10.1016/j.arabjc.2010.08.022 DOI: https://doi.org/10.1016/j.arabjc.2010.08.022
Arshad, M. U., Ghani, M. U., Ullah, A., Güngör, A., & Zaman, M. (2019). Thermodynamic Analysis and Optimization of Double Effect Absorption Refrigeration System using Genetic Algorithm. Energy Conversion and Management, 192, 292–307. https://doi.org/10.1016/j.enconman.2019.03.083 DOI: https://doi.org/10.1016/j.enconman.2019.03.083
Aslan, S., Deneufchatel, M., Hashmi, S., Li, N., Pfefferle, L. D., Elimelech, M., Pauthe, E., & Van Tassel, P. R. (2012). Carbon Nanotube-based Antimicrobial Biomaterials Formed via Layer-by-Layer Assembly with PolypeptIdes. Journal of Colloid and Interface Science, 388(1), 268–273. https://doi.org/10.1016/j.jcis.2012.08.025 DOI: https://doi.org/10.1016/j.jcis.2012.08.025
Astefanei, A., Núñez, O., & Galceran, M. T. (2015). Characterisation and Determination of Fullerenes: A Critical Review. Analytica Chimica Acta, 882, 1–21. https://doi.org/10.1016/j.aca.2015.03.025 DOI: https://doi.org/10.1016/j.aca.2015.03.025
Awasthi, A., Jadhao, P., & Kumari, K. (2019). Clay Nano-Adsorbent: Structures, Applications and Mechanism for Water Treatment. SN Applied Sciences, 1, 1–21. https://doi.org/10.1007/s42452-019-0858-9 DOI: https://doi.org/10.1007/s42452-019-0858-9
Ayyaru, S., Dinh, T. T., & Ahn, Y. H. (2020). Enhanced Antifouling Performance of PVDF Ultrafiltration Membrane by Blending Zinc Oxide With Support of Graphene Oxide Nanoparticle. Chemosphere, 241, 125068. https://doi.org/10.1016/j.chemosphere.2019.125068 DOI: https://doi.org/10.1016/j.chemosphere.2019.125068
Azizi-Lalabadi, M., Hashemi, H., Feng, J., & Jafari, S. M. (2020). Carbon Nanomaterials Against Pathogens; the Antimicrobial Activity of Carbon Nanotubes, Graphene/Graphene Oxide, Fullerenes, and their Nanocomposites. Advances in Colloid and Interface Science, 284, 102250. https://doi.org/10.1016/j.cis.2020.102250 DOI: https://doi.org/10.1016/j.cis.2020.102250
Babaei-Ghazvini, A., Acharya, B., & Korber, D. R. (2021). Antimicrobial Biodegradable Food Packaging Based on Chitosan and Metal/Metal-Oxide Bio-Nanocomposites: A Review. Polymers, 13(16), 2790. https://doi.org/10.3390/polym13162790 DOI: https://doi.org/10.3390/polym13162790
Bag, S. S., Bora, A., & Golder, A. K. (2021). Turning wastes into value‐added materials: Polystyrene Nanocomposites (PS–AgNPs) from Waste Thermocol and Green Synthesized Silver Nanoparticles for Water Disinfection Application. Polymer Composites, 42(11), 6094–6105. https://doi.org/10.1002/pc.26287 DOI: https://doi.org/10.1002/pc.26287
Ballatore, M. B., Pérez, M. E., Santamarina, S. C., Durantini, J. E., Milanesio, M. E., & Durantini, E. N. (2022). Photodynamic Polymers Constituted by Porphyrin Units as Antibacterial Materials. Photochem, 2(4), 891–904. https://doi.org/10.3390/photochem2040057 DOI: https://doi.org/10.3390/photochem2040057
Barbosa, M. O., Moreira, N. F., Ribeiro, A. R., Pereira, M. F., & Silva, A. M. (2016). Occurrence and Removal of Organic Micropollutants: An Overview of the Watch List of EU Decision 2015/495. Water Research, 94, 257–279. https://doi.org/10.1016/j.watres.2016.02.047 DOI: https://doi.org/10.1016/j.watres.2016.02.047
Bellar, T. A., Lichtenberg, J. J., & Kroner, R. C. (1974). The occurrence of Organohalides in Chlorinated Drinking Waters. Journal–American Water Works Association, 66(12), 703–706. https://doi.org/10.1002/j.1551-8833.1974.tb02129.x DOI: https://doi.org/10.1002/j.1551-8833.1974.tb02129.x
Benigno, E., Lorente, M. A., Olmos, D., González‐Gaitano, G., & González‐Benito, J. (2019). Nanocomposites Based on Low Density Polyethylene Filled with Carbon Nanotubes Prepared by High Energy Ball Milling and their Potential Antibacterial Activity. Polymer International, 68(6), 1155–1163. https://doi.org/10.1002/pi.5808 DOI: https://doi.org/10.1002/pi.5808
Benstoem, F., Nahrstedt, A., Boehler, M., Knopp, G., Montag, D., Siegrist, H., & Pinnekamp, J. (2017). Performance of Granular Activated Carbon to remove Micropollutants from Municipal Wastewater–A Meta-Analysis of Pilot-and Large-Scale Studies. Chemosphere, 185, 105–118. https://doi.org/10.1016/j.chemosphere.2017.06.118 DOI: https://doi.org/10.1016/j.chemosphere.2017.06.118
Bing, W., Sun, H., Yan, Z., Ren, J., & Qu, X. (2016). Programmed Bacteria Death Induced by Carbon Dots With Different Surface Charge. Small, 12(34), 4713–4718. https://doi.org/10.1002/smll.201600294 DOI: https://doi.org/10.1002/smll.201600294
Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., & Stormer, H. L. (2008). Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communications, 146(9-10), 351–355. https://doi.org/10.1016/j.ssc.2008.02.024 DOI: https://doi.org/10.1016/j.ssc.2008.02.024
Brandelli, A., Ritter, A. C., & Veras, F. F. (2017). Antimicrobial Activities of Metal Nanoparticles. In Metal Nanoparticles in Pharma (pp. 337–363). https://doi.org/10.1007/978-3-319-63790-7_15 DOI: https://doi.org/10.1007/978-3-319-63790-7_15
Brown, N. F., Wickham, M. E., Coombes, B. K., & Finlay, B. B. (2006). Crossing the Line: Selection and Evolution of Virulence Traits. PLoS Pathogens, 2(5), e42. https://doi.org/10.1371/journal.ppat.0020042 DOI: https://doi.org/10.1371/journal.ppat.0020042
C Thomas, S., Kumar Mishra, P., & Talegaonkar, S. (2015). Ceramic nanoparticles: Fabrication Methods and Applications in Drug Delivery. Current Pharmaceutical Design, 21(42), 6165–6188. https://doi.org/10.2174/1381612821666151027153246 DOI: https://doi.org/10.2174/1381612821666151027153246
Cabral, J. P. (2010). Water microbiology. Bacterial Pathogens and Water. International Journal of Environmental Research and Public Health, 7(10), 3657–3703. https://doi.org/10.3390/ijerph7103657 DOI: https://doi.org/10.3390/ijerph7103657
Chauhan, A., Sillu, D., & Agnihotri, S. (2019). Removal of pharmaceutical Contaminants in Wastewater Using Nanomaterials: A Comprehensive Review. Current Drug Metabolism, 20(6), 483–505. https://doi.org/10.2174/1389200220666181127104812 DOI: https://doi.org/10.2174/1389200220666181127104812
Chen, J., & Li, Y. (2016). The Road to MOF‐Related Functional Materials and Beyond: Desire, Design, Decoration, and Development. The Chemical Record, 16(3), 1456–1476. https://doi.org/10.1002/tcr.201500304 DOI: https://doi.org/10.1002/tcr.201500304
Coker, V. S., Green, M., & Corr, S. A. (2012). Nanoscience: Volume 1: Nanostructures Through Chemistry. Royal Society of Chemistry. https://doi.org/10.1039/9781849734804
Costet, N., Villanueva, C. M., Jaakkola, J. J., Kogevinas, M., Cantor, K. P., King, W. D., Lynch, C. F., Nieuwenhuijsen, M. J., & Cordier, S. (2011). Water Disinfection by-Products and Bladder Cancer : Is There a European Specificity? A Pooled and Meta-Analysis of European Case-Control Studies. Occupational and Environmental Medicine, 68(5), 379–385. https://doi.org/10.1136/oem.2010.062703 DOI: https://doi.org/10.1136/oem.2010.062703
da Silva, B. L., Caetano, B. L., Chiari-Andréo, B. G., Pietro, R. C., & Chiavacci, L. A. (2019). Increased Antibacterial Activity of ZnO Nanoparticles: Influence of Size and Surface Modification. Colloids and Surfaces B: Biointerfaces, 177, 440–447. https://doi.org/10.1016/j.colsurfb.2019.02.013 DOI: https://doi.org/10.1016/j.colsurfb.2019.02.013
Das, S., Sinha, S., Das, B., Jayabalan, R., Suar, M., Mishra, A., Tamhankar, A. J., Stålsby Lundborg, C., & Tripathy, S. K. (2017). Disinfection of Multidrug Resistant Escherichia Coli by Solar-Photocatalysis using Fe-Doped Zno Nanoparticles. Scientific Reports, 7(1), 1–4. https://doi.org/10.1038/s41598-017-00173-0 DOI: https://doi.org/10.1038/s41598-017-00173-0
de Oliveira, L. R., Rodrigues, T. A., Costa, H. L., & da Silva Jr, W. M. (2022). Scuffing Resistance of Polyalphaolefin (PAO)-based Nanolubricants with Oleic Acid (OA) and Iron Oxide Nanoparticles. Materials Today Communications, 31, 103837. https://doi.org/10.1016/j.mtcomm.2022.103837 DOI: https://doi.org/10.1016/j.mtcomm.2022.103837
Deka, B., Baruah, C., Babu, A., & Kalita, P. (2022). Biological and Non-Conventional Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs): Their Potential Applications. Journal of Nanotechnology and Nanomaterials, 3(2), 79–89. https://doi.org/10.33696/Nanotechnol.3.034 DOI: https://doi.org/10.33696/Nanotechnol.3.034
Dolati, M., Tafvizi, F., Salehipour, M., Komeili Movahed, T., & Jafari, P. (2023). Biogenic Copper Oxide Nanoparticles From Bacillus coagulans Induced Reactive Oxygen Species Generation and apoptotic and Anti-Metastatic Activities in Breast Cancer Cells. Scientific Reports, 13(1), 3256. https://doi.org/10.1038/s41598-023-30436-y DOI: https://doi.org/10.1038/s41598-023-30436-y
Dong, Y. D., Zhang, H., Zhong, G. J., Yao, G., & Lai, B. (2021). Cellulose/Carbon Composites and their Applications in Water Treatment—a review. Chemical Engineering Journal, 405, 126980. https://doi.org/10.1016/j.cej.2020.126980 DOI: https://doi.org/10.1016/j.cej.2020.126980
Dubey, R., Dutta, D., Sarkar, A., & Chattopadhyay, P. (2021). Functionalized Carbon Nanotubes : Synthesis, Properties and Applications in water Purification, Drug Delivery, and Material and Biomedical Sciences. Nanoscale Advances, 3(20), 5722–5744. https://doi.org/10.1039/D1NA00293G DOI: https://doi.org/10.1039/D1NA00293G
Duri, S., Harkins, A. L., Frazier, A. J., & Tran, C. D. (2017). Composites Containing Fullerenes and Polysaccharides : Green and Facile Synthesis, Biocompatibility, and Antimicrobial Activity. ACS Sustainable Chemistry & Engineering, 5(6), 5408–5417. https://doi.org/10.1021/acssuschemeng.7b00715 DOI: https://doi.org/10.1021/acssuschemeng.7b00715
Elliott, J. A., Shibuta, Y., Amara, H., Bichara, C., & Neyts, E. C. (2013). Atomistic Modelling of CVD Synthesis of Carbon Nanotubes and Graphene. Nanoscale, 5(15), 6662–6676. https://doi.org/10.1039/c3nr01925 DOI: https://doi.org/10.1039/c3nr01925j
Elliott, J. A., Shibuta, Y., Amara, H., Bichara, C., & Neyts, E. C. (2013). Phytosynthesis of Cu/RGO Using Euphorbia Cheiradenia Boiss Extract and Study of its Ability in The Reduction of Organic Dyes and 4‐Nitrophenol in Aqueous Medium. IET Nanobiotechnology, 13(2), 202–213. https://doi.org/10.1049/iet-nbt.2018.5175 DOI: https://doi.org/10.1049/iet-nbt.2018.5175
Fakhri, A., Azad, M., Fatolahi, L., & Tahami, S. (2018). Microwave-Assisted Photocatalysis of Neurotoxin Compounds Using Metal Oxides Quantum Dots/Nanosheets Composites: Photocorrosion Inhibition, Reusability and Antibacterial Activity Studies. Journal of Photochemistry and Photobiology B: Biology, 178, 108–114. https://doi.org/10.1016/j.jphotobiol.2017.10.038 DOI: https://doi.org/10.1016/j.jphotobiol.2017.10.038
Fan, M., Gong, L., Huang, Y., Wang, D., & Gong, Z. (2018). Facile Preparation of Silver Nanoparticle Decorated Chitosan Cryogels for Point-of-use Water Disinfection. Science of The Total Environment, 613, 1317–1323. https://doi.org/10.1016/j.scitotenv.2017.09.256 DOI: https://doi.org/10.1016/j.scitotenv.2017.09.256
Fang, H., Zhang, Q., Nie, X., Chen, B., Xiao, Y., Zhou, Q., Liao, W., & Liang, X. (2017). Occurrence and Elimination of Antibiotic Resistance Genes in a Long-Term Operation Integrated Surface Flow Constructed Wetland. Chemosphere, 173, 99–106. https://doi.org/10.1016/j.chemosphere.2017.01.027 DOI: https://doi.org/10.1016/j.chemosphere.2017.01.027
Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging Pollutants in the Environment: Present and Future Challenges in Biomonitoring, Ecological Risks and Bioremediation. New Biotechnology, 32(1), 147–156. https://doi.org/10.1016/j.nbt.2014.01.001 DOI: https://doi.org/10.1016/j.nbt.2014.01.001
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849 DOI: https://doi.org/10.1038/nmat1849
Gerbersdorf, S. U., Cimatoribus, C., Class, H., Engesser, K. H., Helbich, S., Hollert, H., Lange, C., Kranert, M., Metzger, J., Nowak, W., & Seiler, T. B. (2015). Anthropogenic Trace Compounds (ATCs) in Aquatic Habitats—Research Needs on Sources, Fate, Detection and Toxicity to Ensure Timely Elimination Strategies and Risk Management. Environment International, 79, 85–105. https://doi.org/10.1016/j.envint.2015.03.011 DOI: https://doi.org/10.1016/j.envint.2015.03.011
Godoy-Gallardo, M., Eckhard, U., Delgado, L. M., de Roo Puente, Y. J., Hoyos-Nogués, M., Gil, F. J., & Perez, R. A. (2021). Antibacterial Approaches in Tissue Engineering Using Metal Ions and Nanoparticles: From mechanisms to applications. Bioactive Materials, 6(12), 4470–4490. https://doi.org/10.1016/j.bioactmat.2021.04.033 DOI: https://doi.org/10.1016/j.bioactmat.2021.04.033
Goldwater, P. N., & Bettelheim, K. A. (2012). Treatment of Enterohemorrhagic Escherichia coli (EHEC) Infection and Hemolytic Uremic Syndrome (HUS). BMC Medicine, 10, 12. https://doi.org/10.1186/1741-7015-10-12 DOI: https://doi.org/10.1186/1741-7015-10-12
Graham, D. Y. (2014). History of Helicobacter pylori, Duodenal Ulcer, gastric Ulcer and Gastric Cancer. World Journal of Gastroenterology, 20(18), 5191. https://doi.org/10.3748/wjg.v20.i18.5191 DOI: https://doi.org/10.3748/wjg.v20.i18.5191
Grzelczak, M., Sánchez‐Iglesias, A., Rodríguez‐González, B., Alvarez‐Puebla, R., Pérez‐Juste, J., & Liz‐Marzán, L. M. (2008). Influence of Iodide Ions on the Growth of Gold Nanorods: Tuning Tip Curvature and Surface Plasmon Resonance. Advanced Functional Materials, 18(23), 3780–3786. https://doi.org/10.1002/adfm.200800706 DOI: https://doi.org/10.1002/adfm.200800706
Guan, Z., Ying, S., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green Synthesis of Nanoparticles: Current Developments and Limitations. Environmental Technology & Innovation, 102336. https://doi.org/10.1016/j.eti.2022.102336 DOI: https://doi.org/10.1016/j.eti.2022.102336
Gudkov, S. V., Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A., & Lisitsyn, A. B. (2021). A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Frontiers in Physics, 9, 641481. https://doi.org/10.3389/fphy.2021.641481 DOI: https://doi.org/10.3389/fphy.2021.641481
Gulig, P. A., Bourdage, K. L., & Starks, A. M. (2005). Molecular pathogenesis of Vibrio vulnificus. Journal of Microbiology, 43(spc1), 118–131.
Guo, D., Xie, G., & Luo, J. (2013). Mechanical properties of nanoparticles: Basics and applications. Journal of Physics D: Applied Physics, 47(1), 013001. https://doi.org/10.1088/0022-3727/47/1/013001 DOI: https://doi.org/10.1088/0022-3727/47/1/013001
Gutiérrez-Cruz, A., Ruiz-Hernández, A. R., Vega-Clemente, J. F., Luna-Gazcón, D. G., & Campos-Delgado, J. (2022). A Review of Top-Down and Bottom-Up Synthesis Methods for the Production of Graphene, Graphene Oxide and Reduced Graphene Oxide. Journal of Materials Science, 57(31), 14543–14578. https://doi.org/10.1007/s10853-022-07514-z DOI: https://doi.org/10.1007/s10853-022-07514-z
Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial Properties of Nanoparticles. Trends in Biotechnology, 30(10), 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004 DOI: https://doi.org/10.1016/j.tibtech.2012.06.004
He, L., Dong, Y., Zheng, Y., Jia, Q., Shan, S., & Zhang, Y. (2019). A Novel Magnetic MIL-101 (Fe)/TiO2 Composite for Photo Degradation of Tetracycline Under Solar Light. Journal of Hazardous Materials, 361, 85–94. https://doi.org/10.1016/j.jhazmat.2018.08.079 DOI: https://doi.org/10.1016/j.jhazmat.2018.08.079
Hennebel, T., De Corte, S., Verstraete, W., & Boon, N. (2012). Microbial Production and Environmental Applications of Pd Nanoparticles for Treatment of Halogenated Compounds. Current Opinion in Biotechnology, 23(4), 555–561. https://doi.org/10.1016/j.copbio.2012.01.007 DOI: https://doi.org/10.1016/j.copbio.2012.01.007
Homem, V., & Santos, L. (2011). Degradation and Removal Methods of Antibiotics from Aqueous Matrices: A Review. Journal of Environmental Management, 92(10), 2304–2347. https://doi.org/10.1016/j.jenvman.2011.05.023 DOI: https://doi.org/10.1016/j.jenvman.2011.05.023
Hong, M., Miao, Z., Xu, X., & Zhang, Q. (2020). Magnetic Iron Oxide Nanoparticles Immobilized with Sugar-Containing Poly(Ionic liquid) Brushes for Efficient Trapping and Killing of Bacteria. ACS Applied Bio Materials, 3(6), 3664–3672. https://doi.org/10.1021/acsabm.0c00298 DOI: https://doi.org/10.1021/acsabm.0c00298
Hopkins, Z. R., & Blaney, L. (2016). An Aggregate Analysis of Personal Care Products in the Environment: Identifying the Distribution of Environmentally-Relevant Concentrations. Environment International, 92, 301–316. https://doi.org/10.1016/j.envint.2016.04.026 DOI: https://doi.org/10.1016/j.envint.2016.04.026
Hornyak, G. L., Tibbals, H. F., Dutta, J., & Moore, J. J. (2008). Introduction to Nanoscience and Nanotechnology. CRC Press. https://doi.org/10.1201/9781420047806 DOI: https://doi.org/10.1201/9781420047806
Hoseinzadeh, E., Makhdoumi, P., Taha, P., Hossini, H., Stelling, J., & Amjad Kamal, M. (2017). A Review on Nano-Antimicrobials: Metal Nanoparticles, Methods and Mechanisms. Current Drug Metabolism, 18(2), 120–128. https://doi.org/10.2174/1389200217666161201111146 DOI: https://doi.org/10.2174/1389200217666161201111146
Hossain, M. F., & Hossain, M. F. (2021). Wastewater. In Global Sustainability in Energy, Building, Infrastructure, Transportation, and Water Technology (pp. 237–324). https://doi.org/10.1007/978-3-030-62376-0_13 DOI: https://doi.org/10.1007/978-3-030-62376-0_13
Hosseini, S. S., Hamadi, A., Foroutan, R., Peighambardoust, S. J., & Ramavandi, B. (2022). Decontamination of Cd²⁺ and Pb²⁺ from Aqueous Solution Using a Magnetic Nanocomposite of Eggshell/Starch/Fe₃O₄. Journal of Water Process Engineering, 48, 102911. https://doi.org/10.1016/j.jwpe.2022.102911 DOI: https://doi.org/10.1016/j.jwpe.2022.102911
Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Huang, Q., & Fan, C. (2010). Graphene-Based Antibacterial Paper. ACS Nano, 4(7), 4317–4323. https://doi.org/10.1021/nn101097v DOI: https://doi.org/10.1021/nn101097v
Huang, Z., Dai, X., Huang, Z., Wang, T., Cui, L., Ye, J., & Wu, P. (2019). Simultaneous and Efficient Photocatalytic Reduction of Cr(VI) and Oxidation of Trace Sulfamethoxazole Under LED Light by rGO@Cu₂O/BiVO₄ pn Heterojunction Composite. Chemosphere, 221, 824–833. https://doi.org/10.1016/j.chemosphere.2019.01.087 DOI: https://doi.org/10.1016/j.chemosphere.2019.01.087
Hussein, M. A., El-Shishtawy, R. M., Alamry, K. A., Asiri, A. M., & Mohamed, S. A. (2019). Efficient Water Disinfection Using Hybrid polyaniline/Graphene/Carbon Nanotube Nanocomposites. Environmental Technology, 40(21), 2813–2824. https://doi.org/10.1080/09593330.2018.1466921 DOI: https://doi.org/10.1080/09593330.2018.1466921
Ibrahim, R. K., El-Shafie, A., Hin, L. S., Mohd, N. S., Aljumaily, M. M., Ibraim, S., & AlSaadi, M. A. (2019). A Clean Approach for Functionalized Carbon Nanotubes by Deep Eutectic Solvents and their Performance in the Adsorption of Methyl Orange from Aqueous Solution. Journal of Environmental Management, 235, 521–534. https://doi.org/10.1016/j.jenvman.2019.01.070 DOI: https://doi.org/10.1016/j.jenvman.2019.01.070
Islam, S. E., Hang, D. R., Chen, C. H., & Sharma, K. H. (2018). Facile and Cost-Efficient Synthesis Of Quasi-0D/2D ZnO/MoS₂ Nanocomposites for Highly Enhanced Visible-Light-Driven Photocatalytic Degradation of Organic Pollutants and Antibiotics. Chemistry – A European Journal, 24(37), 9305–9315. https://doi.org/10.1002/chem.201801397 DOI: https://doi.org/10.1002/chem.201801397
Jiao, L., Wang, Y., Jiang, H. L., & Xu, Q. (2018). Metal-Organic Frameworks as Platforms for Catalytic Applications. Advanced Materials, 30(37), 1703663. https://doi.org/10.1002/adma.201703663 DOI: https://doi.org/10.1002/adma.201703663
Jin, Y., Zheng, Y., Podkolzin, S. G., & Lee, W. (2020). Band Gap of Reduced Graphene Oxide Tuned by Controlling Functional Groups. Journal of Materials Chemistry C, 8(14), 4885–4894. https://doi.org/10.1039/C9TC07063J DOI: https://doi.org/10.1039/C9TC07063J
Kang, S., Pinault, M., Pfefferle, L. D., & Elimelech, M. (2007). Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir, 23(17), 8670–8673. https://doi.org/10.1021/la701067r DOI: https://doi.org/10.1021/la701067r
Karim, S., Bae, S., Greenwood, D., Hanna, K., & Singhal, N. (2017). Degradation of 17α-Ethinylestradiol by Nano Zero Valent Iron Under Different pH and Dissolved Oxygen Levels. Water Research, 125, 32–41. https://doi.org/10.1016/j.watres.2017.08.029 DOI: https://doi.org/10.1016/j.watres.2017.08.029
Kefeni, K. K., Mamba, B. B., & Msagati, T. A. (2017). Application of Spinel Ferrite Nanoparticles in Water and Wastewater treatment: A Review. Separation and Purification Technology, 188, 399–422. https://doi.org/10.1016/j.seppur.2017.07.015 DOI: https://doi.org/10.1016/j.seppur.2017.07.015
Kessler, A., Hedberg, J., Blomberg, E., & Odnevall, I. (2022). Reactive Oxygen Species formed by Metal and Metal Oxide Nanoparticles in Physiological Media-a Review of Reactions of Importance to Nanotoxicity and Proposal for Categorization. Nanomaterials, 12(11), 1922. https://doi.org/10.3390/nano12111922 DOI: https://doi.org/10.3390/nano12111922
Khan, A. A., Khan, A., Rahman, M. M., Asiri, A. M., & Oves, M. (2016). Lead Sensors Development and Antimicrobial Activities Based on Graphene Oxide/Carbon Nanotube/Poly(O-toluidine) Nanocomposite. International Journal of Biological Macromolecules, 89, 198–205. https://doi.org/10.1016/j.ijbiomac.2016.04.064 DOI: https://doi.org/10.1016/j.ijbiomac.2016.04.064
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, Applications and Toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011 DOI: https://doi.org/10.1016/j.arabjc.2017.05.011
Khan, S., & Hossain, M. K. (2022). Classification and Properties of Nanoparticles. In Nanoparticle-Based Polymer Composites (pp. 15–54). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-824272-8.00009-9 DOI: https://doi.org/10.1016/B978-0-12-824272-8.00009-9
Koeppenkastrop, D., & De Carlo, E. H. (1993). Uptake of Rare Earth Elements from Solution by Metal Oxides. Environmental Science & Technology, 27(9), 1796–1802. https://doi.org/10.1021/es00046a006 DOI: https://doi.org/10.1021/es00046a006
Kooij, D. (2000). Biological stability: A Multidimensional Quality Aspect of Treated Water. In Environmental Challenges 2000 (pp. 25–34). Springer. https://doi.org/10.1007/978-94-011-4369-1_3 DOI: https://doi.org/10.1007/978-94-011-4369-1_3
Kumar, P., Srivastava, S., Banerjee, A., & Banerjee, S. (2022). Prevalence and Predictors of Water-Borne Diseases Among Elderly People in India: Evidence from Longitudinal Ageing Study in India, 2017–18. BMC Public Health, 22, 993. https://doi.org/10.1186/s12889-022-13376-6 DOI: https://doi.org/10.1186/s12889-022-13376-6
Kumar, S., Ahlawat, W., Bhanjana, G., Heydarifard, S., Nazhad, M. M., & Dilbaghi, N. (2014). Nanotechnology-Based Water Treatment Strategies. Journal of Nanoscience and Nanotechnology, 14(2), 1838–1858. https://doi.org/10.1166/jnn.2014.9050 DOI: https://doi.org/10.1166/jnn.2014.9050
Kumar, S., Ye, F., Dobretsov, S., & Dutta, J. (2021). Nanocoating is a New way for Biofouling Prevention. Frontiers in Nanotechnology, 90. https://doi.org/10.3389/fnano.2021.771098 DOI: https://doi.org/10.3389/fnano.2021.771098
Kumar, V., Katyal, D., & Nayak, S. (2020). Removal of Heavy Metals and Radionuclides from Water Using Nanomaterials: Current Scenario and Future Prospects. Environmental Science and Pollution Research, 27, 41199–41224. https://doi.org/10.1007/s11356-020-10348-4 DOI: https://doi.org/10.1007/s11356-020-10348-4
Kumari, M., & Gupta, S. K. (2022). Occurrence and Exposure to Trihalomethanes in Drinking Water : A Systematic Review and Meta-Analysis. Exposure and Health, 14(4), 915–939. https://doi.org/10.1007/s12403-022-00467-3 DOI: https://doi.org/10.1007/s12403-022-00467-3
Kumari, P., Alam, M., & Siddiqi, W. A. (2019). Usage of Nanoparticles as Adsorbents for Wastewater Treatment: An Emerging Trend. Sustainable Materials and Technologies, 22, e00128. https://doi.org/10.1016/j.susmat.2019.e00128 DOI: https://doi.org/10.1016/j.susmat.2019.e00128
Kurosawa, T., Okamoto, T., Yamashita, Y., Kumagai, S., Watanabe, S., & Takeya, J. (2021). Strong and Atmospherically Stable Dicationic Oxidative Dopant. Advanced Science, 8(24), 2101998. https://doi.org/10.1002/advs.202101998 DOI: https://doi.org/10.1002/advs.202101998
Lee, K. J., Lee, J. H., Jeoung, S., & Moon, H. R. (2017). Transformation of Metal-Organic Frameworks/Coordination Polymers into Functional Nanostructured Materials: Experimental Approaches Based on Mechanistic Insights. Accounts of Chemical Research, 50(11), 2684–2692. https://doi.org/10.1021/acs.accounts.7b00259 DOI: https://doi.org/10.1021/acs.accounts.7b00259
Lee, K. M., Lai, C. W., Ngai, K. S., & Juan, J. C. (2016). Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review. Water Research, 88, 428–448. https://doi.org/10.1016/j.watres.2015.09.045 DOI: https://doi.org/10.1016/j.watres.2015.09.045
Li, G., Zhao, S., Zhang, Y., & Tang, Z. (2018). Metal-Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Advanced Materials, 30(51), 1800702. https://doi.org/10.1002/adma.201800702 DOI: https://doi.org/10.1002/adma.201800702
Liu, D., Mao, Y., & Ding, L. (2018). Carbon Nanotubes as Antimicrobial Agents for Water Disinfection and Pathogen Control. Journal of Water and Health, 16(2), 171–180. https://doi.org/10.2166/wh.2018.228 DOI: https://doi.org/10.2166/wh.2018.228
Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S., & Wang, X. C. (2014). A Review on the Occurrence of Micropollutants in the Aquatic Environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065 DOI: https://doi.org/10.1016/j.scitotenv.2013.12.065
Ma, X., Chai, Y., Li, P., & Wang, B. (2019). Metal-Organic Framework Films and their Potential Applications in Environmental Pollution control. Accounts of Chemical Research, 52(5), 1461–1470. https://doi.org/10.1021/acs.accounts.9b00113 DOI: https://doi.org/10.1021/acs.accounts.9b00113
Mackenzie, C. R., & Livinstone, D. (1968). Salmonellae in Fish and Food. South African Medical Journal, 42(38), 999–1003.
Makabenta, J. M., Nabawy, A., Li, C. H., Schmidt-Malan, S., Patel, R., & Rotello, V. M. (2021). Nanomaterial-Based Therapeutics for Antibiotic-Resistant Bacterial Infections. Nature Reviews Microbiology, 19(1), 23–36. https://doi.org/10.1038/s41579-020-0420-1 DOI: https://doi.org/10.1038/s41579-020-0420-1
Maksimchuk, P. O., Yefimova, S. L., Hubenko, K. O., Omielaieva, V. V., Kavok, N. S., Klochkov, V. K., Sorokin, O. V., & Malyukin, Y. V. (2020). Dark Reactive Oxygen Species Generation in ReVO4 : Eu3+ (Re= Gd, Y) nanoparticles in aqueous solutions. The Journal of Physical Chemistry C, 124(6), 3843–3850. https://doi.org/10.1021/acs.jpcc.9b10143 DOI: https://doi.org/10.1021/acs.jpcc.9b10143
Maksimova, Y. G. (2019). Microorganisms and carbon nanotubes : Interaction and Applications. Applied Biochemistry and Microbiology, 55(1), 1–12. https://doi.org/10.1134/S0003683819010101 DOI: https://doi.org/10.1134/S0003683819010101
Maurin, M. (2020). Francisella Tularensis, Tularemia and Serological Diagnosis. Frontiers in Cellular and Infection Microbiology, 10, 512090. https://doi.org/10.3389/fcimb.2020.512090 DOI: https://doi.org/10.3389/fcimb.2020.512090
Mbiri, A., Wittstock, G., Taffa, D. H., Gatebe, E., Baya, J., & Wark, M. (2018). Photocatalytic Degradation of the Herbicide Chloridazon on Mesoporous Titania/Zirconia Nanopowders. Environmental Science and Pollution Research, 25(35), 34873–34883. https://doi.org/10.1007/s11356-017-1023-x DOI: https://doi.org/10.1007/s11356-017-1023-x
Meynell, E. W. (1961). A phage, χ, Which Attacks Motile Bacteria. Microbiology, 25(2), 253–290. https://doi.org/10.1099/00221287-25-2-253 DOI: https://doi.org/10.1099/00221287-25-2-253
Mishra, L., Paul, K. K., & Jena, S. (2021). Coke Wastewater Treatment Methods : Mini Review. Journal of the Indian Chemical Society, 98(10), 100133. https://doi.org/10.1016/j.jics.2021.100133 DOI: https://doi.org/10.1016/j.jics.2021.100133
Mohammed Sadiq, I., Chandrasekaran, N., & Mukherjee, A. J. (2010). Studies on Effect of TiO2 Nanoparticles on Growth and Membrane Permeability of Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Current Nanoscience, 6(4), 381–387. https://doi.org/10.2174/157341310791658973 DOI: https://doi.org/10.2174/157341310791658973
Morrison, C. M., Hogard, S., Pearce, R., Gerrity, D., von Gunten, U., & Wert, E. C. (2022). Ozone Disinfection of Waterborne Pathogens and their Surrogates: A Critical review. Water Research, 221, 118206. https://doi.org/10.1016/j.watres.2022.118206 DOI: https://doi.org/10.1016/j.watres.2022.118206
Motshekga, S. C., Ray, S. S., & Maity, A. (2018). Synthesis and Characterization Of Alginate Beads Encapsulated Zinc Oxide Nanoparticles for Bacteria Disinfection in Water. Journal of Colloid and Interface Science, 512, 686–692. https://doi.org/10.1016/j.jcis.2017.10.098 DOI: https://doi.org/10.1016/j.jcis.2017.10.098
Mubarak, N. M., Sahu, J. N., Abdullah, E. C., & Jayakumar, N. S. (2016). Rapid Adsorption of Toxic Pb (II) Ions from Aqueous Solution Using Multiwall Carbon Nanotubes Synthesized by Microwave Chemical Vapor Deposition Technique. Journal of Environmental Sciences, 45, 143–155. https://doi.org/10.1016/j.jes.2015.12.025 DOI: https://doi.org/10.1016/j.jes.2015.12.025
Muellner, M. G., Wagner, E. D., McCalla, K., Richardson, S. D., Woo, Y. T., & Plewa, M. J. (2007). Haloacetonitriles vs. Regulated Haloacetic acids: Are Nitrogen-Containing DBPs More Toxic? Environmental Science & Technology, 41(2), 645–651. https://doi.org/10.1021/es0617441 DOI: https://doi.org/10.1021/es0617441
Munnawar, I., Iqbal, S. S., Anwar, M. N., Batool, M., Tariq, S., Faitma, N., … Ahmad, N. M. (2017). Synergistic Effect of Chitosan-zinc Oxide Hybrid Nanoparticles on Antibiofouling and Water Disinfection of Mixed Matrix Polyethersulfone Nanocomposite Membranes. Carbohydrate Polymers, 175, 661–670. https://doi.org/10.1016/j.carbpol.2017.08.036 DOI: https://doi.org/10.1016/j.carbpol.2017.08.036
Neamtu, M., Nadejde, C., Hodoroaba, V. D., Schneider, R. J., Verestiuc, L., & Panne, U. (2018). Functionalized Magnetic Nanoparticles: Synthesis, Characterization, Catalytic Application And Assessment of Toxicity. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-24721-4 DOI: https://doi.org/10.1038/s41598-018-24721-4
Ng, A., Weerakoon, D., Lim, E., & Padhye, L. P. (2019). Fate of Environmental Pollutants. Water Environment Research, 91(10), 1294–1325. https://doi.org/10.1002/wer.1225 DOI: https://doi.org/10.1002/wer.1225
Omran, B., & Baek, K. H. (2022). Graphene-Derived Antibacterial Nanocomposites for Water Disinfection: Current And Future Perspectives. Environmental Pollution, 300, 118836. https://doi.org/10.1016/j.envpol.2022.118836 DOI: https://doi.org/10.1016/j.envpol.2022.118836
Ottaviani, D., Leoni, F., Serra, R., Serracca, L., Decastelli, L., Rocchegiani, E., … Carraturo, A. (2012). Nontoxigenic Vibrio Parahaemolyticus Strains Causing Acute Gastroenteritis. Journal of Clinical Microbiology, 50(12), 4141–4143. https://doi.org/10.1128/JCM.01993-12 DOI: https://doi.org/10.1128/JCM.01993-12
Pal, D. (2020). Synthesis of metal oxide nanoparticles-A General Overview. Indian Journal of Chemistry-Section A (IJCA), 59(10), 1513–1528. https://doi.org/10.56042/ijca.v59i10.33601 DOI: https://doi.org/10.56042/ijca.v59i10.33601
Palza, H. (2015). Antimicrobial Polymers With Metal Nanoparticles. International Journal of Molecular Sciences, 16(1), 2099–2116. https://doi.org/10.3390/ijms16012099 DOI: https://doi.org/10.3390/ijms16012099
Pan, B., & Xing, B. (2008). Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 42(24), 9005–9013. https://doi.org/10.1021/es801777n
Nkele, A. C., & Ezema, F. I. (2020). Diverse Synthesis And Characterization Techniques Of Nanoparticles. Thin Films.
Noah, N. M., & Ndangili, P. M. (2022). Green Synthesis of Nanomaterials from Sustainable Materials for Biosensors and Drug Delivery. Sensors International, 3, 100166. https://doi.org/10.1016/j.sintl.2022.100166 DOI: https://doi.org/10.1016/j.sintl.2022.100166
Nogueira, V., Lopes, I., Freitas, A. C., Rocha-Santos, T. A., Gonçalves, F., Duarte, A. C., & Pereira, R. (2015). Biological Treatment With Fungi of Olive Mill Wastewater Pre-Treated by Photocatalytic Oxidation With Nanomaterials. Ecotoxicology and Environmental Safety, 115, 234–242. https://doi.org/10.1016/j.ecoenv.2015.02.028 DOI: https://doi.org/10.1016/j.ecoenv.2015.02.028
Nogueira, V., Lopes, I., Rocha-Santos, T. A., Gonçalves, F., & Pereira, R. (2018). Treatment of Real Industrial Wastewaters Through Nano-TiO2 and Nano-Fe2O3 Photocatalysis: Case Study of Mining and Kraft Pulp Mill Effluents. Environmental Technology, 39(12), 1586–1596. https://doi.org/10.1080/09593330.2017.1334093 DOI: https://doi.org/10.1080/09593330.2017.1334093
Obeid, M. M., & Sun, Q. (2022). Assembling Biphenylene into 3D f Organic Chemicals on Carbon Nanotubes. Environmental Science & Technology, 42(24), 9005–9013. https://doi.org/10.1021/es801777n DOI: https://doi.org/10.1021/es801777n
Pandiyan, R., Mahalingam, S., & Ahn, Y. H. (2019). Antibacterial and Photocatalytic Activity of Hydrothermally Synthesized SnO2 Doped GO and Cnt Under Visible Light Irradiation. Journal of Photochemistry and Photobiology B: Biology, 191, 18–25. https://doi.org/10.1016/j.jphotobiol.2018.12.007 DOI: https://doi.org/10.1016/j.jphotobiol.2018.12.007
Park, K., Ali, I., & Kim, J. O. (2018). Photodegradation of Perfluorooctanoic Acid by Graphene Oxide-Deposited TiO2 Nanotube Arrays in Aqueous Phase. Journal of Environmental Management, 218, 333–339. https://doi.org/10.1016/j.jenvman.2018.04.016 DOI: https://doi.org/10.1016/j.jenvman.2018.04.016
Peng, J., Zhang, Y., Zhang, C., Miao, D., Li, J., Liu, H., Wang, L., & Gao, S. (2019). Removal of Triclosan in a Fenton-like System Mediated by Graphene Oxide: Reaction Kinetics and Ecotoxicity Evaluation. Science of the Total Environment, 673, 726–733. https://doi.org/10.1016/j.scitotenv.2019.03.354 DOI: https://doi.org/10.1016/j.scitotenv.2019.03.354
Peng, L. M., Zhang, Z., & Qiu, C. (2019). Carbon nanotube digital electronics. Nature Electronics, 2(11), 499–505. https://doi.org/10.1038/s41928-019-0330-2 DOI: https://doi.org/10.1038/s41928-019-0330-2
Perazzoli, S., Michels, C., & Soares, H. M. (2017). Magnetite Nanoparticles Influence the Ammonium-Oxidizing Bacteria Activity During Nitritation Process. Water Science and Technology, 75(1), 165–172. https://doi.org/10.2166/wst.2016.497 DOI: https://doi.org/10.2166/wst.2016.497
Philip, A., & Kumar, A. R. (2022). The Performance Enhancement of Surface Plasmon Resonance Optical Sensors Using Nanomaterials: A Review. Coordination Chemistry Reviews, 458, 214424. https://doi.org/10.1016/j.ccr.2022.214424 DOI: https://doi.org/10.1016/j.ccr.2022.214424
Piatkowska, A., Janus, M., Szymanski, K., & Mozia, S. (2021). C-, N- and S-Doped Tio2 Photocatalysts: A Review. Catalysts, 11(1), 144. https://doi.org/10.3390/catal11010144 DOI: https://doi.org/10.3390/catal11010144
Prest, E. I., Hammes, F., Van Loosdrecht, M. C., & Vrouwenvelder, J. S. (2016). Biological Stability of Drinking Water : Controlling Factors, Methods, and Challenges. Frontiers in Microbiology, 7, 45. https://doi.org/10.3389/fmicb.2016.00045 DOI: https://doi.org/10.3389/fmicb.2016.00045
Punia, P., Bharti, M. K., Chalia, S., Dhar, R., Ravelo, B., Thakur, P., & Thakur, A. (2021). Recent Advances in Synthesis, Characterization, and Applications of Nanoparticles for Contaminated Water Treatment—a Review. Ceramics International, 47(2), 1526–1550. https://doi.org/10.1016/j.ceramint.2020.09.050 DOI: https://doi.org/10.1016/j.ceramint.2020.09.050
Qu, X., Alvarez, P. J., & Li, Q. (2013). Applications of Nanotechnology in Water and Wastewater Treatment. Water Research, 47(12), 3931–3946. https://doi.org/10.1016/j.watres.2012.09.058 DOI: https://doi.org/10.1016/j.watres.2012.09.058
Quirós, J., Boltes, K., Aguado, S., de Villoria, R. G., Vilatela, J. J., & Rosal, R. (2015). Antimicrobial Metal-Organic Frameworks Incorporated into Electrospun Fibers. Chemical Engineering Journal, 262, 189–197. https://doi.org/10.1016/j.cej.2014.09.104 DOI: https://doi.org/10.1016/j.cej.2014.09.104
Rai, P. K., Lee, J., Kailasa, S. K., Kwon, E. E., Tsang, Y. F., Ok, Y. S., & Kim, K. H. (2018). A Critical Review of ferrate (VI)-Based Remediation of Soil and Groundwater. Environmental Research, 160, 420–448. https://doi.org/10.1016/j.envres.2017.10.016 DOI: https://doi.org/10.1016/j.envres.2017.10.016
Rani, M. (2021). A Review on Contamination of Drinking Water due to Pathogenic Microbes and Water-Borne Illness in Uttarakhand, India. International Research Journal of Environmental Science, 10, 20–23.
Rao, J. P., & Geckeler, K. E. (2011). Polymer Nanoparticles: Preparation Techniques and Size-Control Parameters. Progress in Polymer Science, 36(7), 887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001 DOI: https://doi.org/10.1016/j.progpolymsci.2011.01.001
Rao, S. M., Subburaju, N., Palaniappan, N., & Varadarajan, V. V. (2022). An Unusual Case of Community-Acquired Aeromonas Hydrophila Gastroenteritis Causing Delayed-Onset Obstructive Hydrocephalus in a Child After Posterior Fossa Craniotomy for a Tumor: A Case Report and Review of Literature. Pediatric Infectious Disease, 4(1), 21–23. https://doi.org/10.5005/jp-journals-10081-1309 DOI: https://doi.org/10.5005/jp-journals-10081-1309
Rasheed, T., Rizwan, K., Bilal, M., & Iqbal, H. M. (2020). Metal-Organic Framework-Based Engineered Materials—Fundamentals and Applications. Molecules, 25(7), 1598. https://doi.org/10.3390/molecules2507159 8 DOI: https://doi.org/10.3390/molecules25071598
Ray, S. S., Gusain, R., & Kumar, N. (2020). Carbon Nanomaterial-Based Adsorbents for Water Purification : Fundamentals and Applications. Elsevier. https://doi.org/10.1016/B978-0-12-821959-1.00009-X DOI: https://doi.org/10.1016/B978-0-12-821959-1.00009-X
Reynoso, E., Durantini, A. M., Solis, C. A., Macor, L. P., Otero, L. A., Gervaldo, M. A., Durantini, E. N., & Heredia, D. A. (2021). Photoactive Antimicrobial Coating based on a PEDOT-Fullerene C60 Polymeric Dyad. RSC Advances, 11(38), 23519–23532. https://doi.org/10.1039/D1RA03417K DOI: https://doi.org/10.1039/D1RA03417K
Ribeiro, A. I., Dias, A. M., & Zille, A. (2022). Synergistic Effects Between Metal Nanoparticles and Commercial Antimicrobial Agents: A Review. ACS Applied Nano Materials, 5(3), 3030–3064. https://doi.org/10.1021/acsanm.1c03891 DOI: https://doi.org/10.1021/acsanm.1c03891
Rojas, S., & Horcajada, P. (2020). Metal-Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chemical Reviews, 120(16), 8378–8415. https://doi.org/10.1021/acs.chemrev.9b00797 DOI: https://doi.org/10.1021/acs.chemrev.9b00797
Roy, A., Gauri, S. S., Bhattacharya, M., & Bhattacharya, J. (2013). Antimicrobial activity of CaO Nanoparticles. Journal of Biomedical Nanotechnology, 9(9), 1570–1578. https://doi.org/10.1166/jbn.2013.1681 DOI: https://doi.org/10.1166/jbn.2013.1681
Sahli, C., Moya, S. E., Lomas, J. S., Gravier-Pelletier, C., Briandet, R., & Hémadi, M. (2022). Recent Advances in Nanotechnology for Eradicating Bacterial Biofilm. Theranostics, 12(5), 2383. https://doi.org/10.7150/thno.67296 DOI: https://doi.org/10.7150/thno.67296
Saied, E., Salem, S. S., Al-Askar, A. A., Elkady, F. M., Arishi, A. A., & Hashem, A. H. (2022). Mycosynthesis of Hematite (α-Fe2O3) Nanoparticles Using Aspergillus Niger and their Antimicrobial and Photocatalytic Activities. Bioengineering, 9(8), 397. https://doi.org/10.3390/bioengineering9080397 DOI: https://doi.org/10.3390/bioengineering9080397
Saifuddin, N., Raziah, A. Z., & Junizah, A. R. (2013). Carbon Nanotubes : A Review on Structure and their Interaction with Proteins. Journal of Chemistry, 2013, 676815. https://doi.org/10.1155/2013/676815 DOI: https://doi.org/10.1155/2013/676815
Samuel, M. S., Ravikumar, M., John, J. A., Selvarajan, E., Patel, H., Chander, P. S., Soundarya, J., Vuppala, S., Balaji, R., & Chandrasekar, N. (2022). A Review on Green Synthesis of Nanoparticles and their Diverse Biomedical and Environmental applications. Catalysts, 12(5), 459. https://doi.org/10.3390/catal12050459 DOI: https://doi.org/10.3390/catal12050459
Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., & Silva, A. M. (2020). Metal-Based Nanoparticles as Antimicrobial Agents : An Overview. Nanomaterials, 10(2), 292. https://doi.org/10.3390/nano10020292 DOI: https://doi.org/10.3390/nano10020292
Sarfraz, S., Javed, A., Mughal, S. S., Bashir, M., Rehman, A., Parveen, S., Khushi, A., & Khan, M. K. (2020). Copper Oxide Nanoparticles: Reactive Oxygen Species Generation and Biomedical Applications. International Journal of Computational and Theoretical Chemistry, 8, 40–46. https://doi.org/10.11648/j.ijctc.20200802.12 DOI: https://doi.org/10.11648/j.ijctc.20200802.12
Schilling, K., Bradford, B., Castelli, D., Dufour, E., Nash, J. F., Pape, W., Schulte, S., Tooley, I., van den Bosch, J., & Schellauf, F. (2010). Human Safety Review of "Nano" Titanium Dioxide and Zinc Oxide. Photochemical & Photobiological Sciences, 9, 495–509. https://doi.org/10.1039/b9pp00180h DOI: https://doi.org/10.1039/b9pp00180h
Schurer, R., Schippers, J. C., Kennedy, M. D., Cornelissen, E. R., Salinas-Rodriguez, S. G., Hijnen, W. A., & Van der Wal, A. (2019). Enhancing Biological Stability of Disinfectant-Free Drinking Water by Reducing High Molecular Weight Organic Compounds With Ultrafiltration Posttreatment. Water Research, 164, 114927. https://doi.org/10.1016/j.watres.2019.114927 DOI: https://doi.org/10.1016/j.watres.2019.114927
Seil, J. T., & Webster, T. J. (2012). Antimicrobial Applications of Nanotechnology: Methods and Literature. International Journal of Nanomedicine, 7, 2767–2781. https://doi.org/10.2147/IJN.S24805 DOI: https://doi.org/10.2147/IJN.S24805
Shah, A., Khalil, A. T., Ahmad, K., Iqbal, J., Shah, H., Shinwari, Z. K., & Maaza, M. (2021). Biogenic Nanoparticles: Synthesis, Mechanism, Characterization and Applications. In Biogenic Nanoparticles for Cancer Theranostics (pp. 27–42). Elsevier. https://doi.org/10.1016/B978-0-12-821467-1.00010-0 DOI: https://doi.org/10.1016/B978-0-12-821467-1.00010-0
Sharma, S., Kumar, K., Thakur, N., & Chauhan, M. S. (2020). Ocimum Tenuiflorum Leaf Extract as a Green Mediator for the Synthesis of ZnO Nanocapsules Inactivating Bacterial Pathogens. Chemical Papers, 74(10), 3431–3444. https://doi.org/10.1007/s11696-020-01177-3 DOI: https://doi.org/10.1007/s11696-020-01177-3
Sharma, V. K., & Feng, M. (2019). Water Depollution Using Metal-Organic Frameworks-Catalyzed Advanced Oxidation Processes: A Review. Journal of Hazardous Materials, 372, 3–16. https://doi.org/10.1016/j.jhazmat.2017.09.043 DOI: https://doi.org/10.1016/j.jhazmat.2017.09.043
Sharmin, S., Rahaman, M. M., Sarkar, C., Atolani, O., Islam, M. T., & Adeyemi, O. S. (2021). Nanoparticles as AntimicRobial and Antiviral Agents : A Literature-Based Perspective Study. Heliyon, 7(3), e06456. https://doi.org/10.1016/j.heliyon.2021.e06456 DOI: https://doi.org/10.1016/j.heliyon.2021.e06456
Shaterabadi, Z., Nabiyouni, G., Goya, G. F., & Soleymani, M. (2022). The Effect of the Magnetically Dead Layer on the Magnetization and the Magnetic Anisotropy of the Dextran-Coated Magnetite Nanoparticles. Applied Physics A, 128(8), 631. https://doi.org/10.1007/s00339-022-05675-x DOI: https://doi.org/10.1007/s00339-022-05675-x
Shen, X., Song, J., Kawakami, K., & Ariga, K. (2023). Zero to Zero Nanoarchitectonics with Fullerene: From Molecules to Nanoparticles. Journal of Nanoparticle Research, 25(3), 45. https://doi.org/10.1007/s11051-023-05693-7 DOI: https://doi.org/10.1007/s11051-023-05693-7
Shim, J., Seo, Y. S., Oh, B. T., & Cho, M. (2016). Microbial Inactivation Kinetics and Mechanisms of Carbon-Doped TiO2 (C-TiO2) Under Visible Light. Journal of Hazardous Materials, 306, 133–139. https://doi.org/10.1016/j.jhazmat.2015.12.013 DOI: https://doi.org/10.1016/j.jhazmat.2015.12.013
Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A Review on Biosynthesis of Silver Nanoparticles and their Biocidal Properties. Journal of Nanobiotechnology, 16(1), 1–28. https://doi.org/10.1186/s12951-018-0334-5 DOI: https://doi.org/10.1186/s12951-018-0334-5
Sigmund, W., Yuh, J., Park, H., Maneeratana, V., Pyrgiotakis, G., Daga, A., Taylor, J., & Nino, J. C. (2006). Processing and Structure Relationships in Electrospinning of Ceramic Fiber Systems. Journal of the American Ceramic Society, 89(2), 395–407. https://doi.org/10.1111/j.1551-2916.2005.00807.x DOI: https://doi.org/10.1111/j.1551-2916.2005.00807.x
Singh, R., Bhadouria, R., Singh, P., Kumar, A., Pandey, S., & Singh, V. K. (2020). Nanofiltration Technology for Removal of Pathogens Present in Drinking Water. In Waterborne Pathogens (pp. 463–489). Elsevier. https://doi.org/10.1016/B978-0-12-818783-8.00021-9 DOI: https://doi.org/10.1016/B978-0-12-818783-8.00021-9
Sousa, J. C., Ribeiro, A. R., Barbosa, M. O., Pereira, M. F., & Silva, A. M. (2018). A Review on Environmental Monitoring of Water Organic Pollutants Identified by EU Guidelines. Journal of Hazardous Materials, 344, 146–162. https://doi.org/10.1016/j.jhazmat.2017.09.058 DOI: https://doi.org/10.1016/j.jhazmat.2017.09.058
Srinivas, K. (2014). Need of Nanotechnology in Education. Science Journal of Education, 2(2), 58–64.
Stueber, D. D., Villanova, J., Aponte, I., Xiao, Z., & Colvin, V. L. (2021). Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics, 13(7), 943. https://doi.org/10.3390/pharmaceutics13070943cs13070943 DOI: https://doi.org/10.3390/pharmaceutics13070943
Sugunan, A., Warad, H. C., Boman, M., & Dutta, J. (2006). Zinc Oxide Nanowires in Chemical Bath on Seeded Substrates: Role of Hexamine. Journal of Sol-Gel Science and Technology, 39(1), 49–56. https://doi.org/10.1007/s10971-006-6969-y DOI: https://doi.org/10.1007/s10971-006-6969-y
Tahir, M., Zaman, G., & Khan, T. (2019). Prevention Strategies for Mathematical Model MERS-Corona Virus with Stability Analysis and Optimal Control. Journal of Nanoscience and Nanotechnology Applications, 1(1), 1.
Tang, J., & Wang, J. (2018). Metal organic framework with Coordinatively Unsaturated sites as Efficient Fenton-Like Catalyst for Enhanced Degradation of Sulfamethazine. Environmental Science & Technology, 52(9), 5367–5377. https://doi.org/10.1021/acs.est.8b00092 DOI: https://doi.org/10.1021/acs.est.8b00092
Thota, S., Wang, M., Jeon, S., Maragani, S., Hamblin, M. R., & Chiang, L. Y. (2012). Synthesis and Characterization of Positively Charged Pentacationic [60] fullerene monoadducts for antimicrobial photodynamic inactivation. Molecules, 17(5), 5225–5243. https://doi.org/10.3390/molecules17055225 DOI: https://doi.org/10.3390/molecules17055225
Tony, A., El-Geuindi, M., Hussein, S. M., & Elwahab, M. Z. (2016). Degradation of an Organophosphorus Insecticide (chlorpyrifos) in Simulated Wastewater Using Advanced Oxidation processes and chemical oxidation. Applied Science Report, 15, 63–73. https://doi.org/10.15192/PSCP.ASR.2016.15.2.6373 DOI: https://doi.org/10.15192/PSCP.ASR.2016.15.2.6373
Trawiński, J., & Skibiński, R. (2019). Multivariate Comparison of Photocatalytic Properties of Thirteen Nanostructured Metal Oxides for Water Purification. Journal of Environmental Science and Health, Part A, 54(9), 851–864. https://doi.org/10.1080/10934529.2019.1598169 DOI: https://doi.org/10.1080/10934529.2019.1598169
Tsenter, I., Garkusheva, N., Matafonova, G., & Batoev, V. (2022). A Novel Water Disinfection Method Based on Dual-Wavelength UV Radiation of KrCl (222 nm) and XeBr (282 nm) Excilamps. Journal of Environmental Chemical Engineering, 10(3), 107537. https://doi.org/10.1016/j.jece.2022.107537 DOI: https://doi.org/10.1016/j.jece.2022.107537
Uchiya, K. I., Takahashi, H., Nakagawa, T., Yagi, T., Moriyama, M., Inagaki, T., Ichikawa, K., Nikai, T., & Ogawa, K. (2015). Characterization of a Novel Plasmid, pMAH135, from Mycobacterium avium subsp. Hominissuis. PLOS ONE, 10(2), e0117797. https://doi.org/10.1371/journal.pone.0117797 DOI: https://doi.org/10.1371/journal.pone.0117797
Vavourakis, C. D., Heijnen, L., Peters, M. C., Marang, L., Ketelaars, H. A., & Hijnen, W. A. (2020). Spatial and Temporal Dynamics in Attached and Suspended Bacterial Communities in Three Drinking Water Distribution Systems With variable biological stability. Environmental Science & Technology, 54(22), 14535–14546. https://doi.org/10.1021/acs.est.0c04532 DOI: https://doi.org/10.1021/acs.est.0c04532
Vinayagasundaram, C., Nesaraj, A. S., & Sivaranjana, P. (2023). Overview on multicomponent ceramic Composite Materials Used for Efficient Photocatalysis—An Update. Journal of the Indian Chemical Society, 100908. https://doi.org/10.1016/j.jics.2023.100908 DOI: https://doi.org/10.1016/j.jics.2023.100908
Von Freymann, G., Ledermann, A., Thiel, M., Staude, I., Essig, S., Busch, K., & Wegener, M. (2010). Three-Dimensional Nanostructures for Photonics. Advanced Functional Materials, 20(7), 1038–1052. https://doi.org/10.1002/adfm.200901838 DOI: https://doi.org/10.1002/adfm.200901838
Vukoje, I. D., Džunuzović, E. S., Vodnik, V. V., Dimitrijević, S., Ahrenkiel, S. P., & Nedeljković, J. M. (2014). Synthesis, Characterization, and Antimicrobial Activity of Poly (GMA-co-EGDMA) Polymer Decorated with Silver Nanoparticles. Journal of Materials Science, 49, 6838–6844. https://doi.org/10.1007/s10853-014-8386-x DOI: https://doi.org/10.1007/s10853-014-8386-x
Wanda, E. M., Nyoni, H., Mamba, B. B., & Msagati, T. A. (2017). Occurrence of Emerging Micropollutants in Water Systems in Gauteng, Mpumalanga, and North West Provinces, South Africa. International Journal of Environmental Research and Public Health, 14(1), 79. https://doi.org/10.3390/ijerph14010079 DOI: https://doi.org/10.3390/ijerph14010079
Wang, C., Xue, Y., Wang, P., & Ao, Y. (2018). Effects of water Environmental Factors on the Photocatalytic Degradation of Sulfamethoxazole by AgI/UiO-66 Composite Under Visible Light Irradiation. Journal of Alloys and Compounds, 748, 314–322. https://doi.org/10.1016/j.jallcom.2018.03.129 DOI: https://doi.org/10.1016/j.jallcom.2018.03.129
Wang, H., Yuan, X., Wu, Y., Zeng, G., Dong, H., Chen, X., Leng, L., Wu, Z., Peng, L., & Wu, Y. (2016). In Situ Synthesis of In2S3@MIL-125 (Ti) Core-Shell Microparticle for the Removal of Tetracycline from Wastewater by Integrated Adsorption and Visible-Light-Driven Photocatalysis. Applied Catalysis B: Environmental, 186, 19–29. https://doi.org/10.1016/j.apcatb.2015.12.041 DOI: https://doi.org/10.1016/j.apcatb.2015.12.041
Wang, J., Svoboda, L., Němečková, Z., Sgarzi, M., Henych, J., Licciardello, N., & Cuniberti, G. (2021). Enhanced Visible-Light Photodegradation of Fluoroquinolone-Based Antibiotics and E. coli Growth Inhibition using Ag-TiO2 Nanoparticles. RSC Advances, 11(23), 13980–13991. https://doi.org/10.1039/D0RA10403E DOI: https://doi.org/10.1039/D0RA10403E
Wang, Y., Chen, G., Weng, H., Wang, L., Chen, J., Cheng, S., Zhang, P., Wang, M., Ge, X., Chen, H., & Huang, W. (2021). Carbon-Doped Boron Nitride Nanosheets with Adjustable Band Structure for Efficient Photocatalytic U(VI) Reduction under Visible Light. Chemical Engineering Journal, 410, 128280. https://doi.org/10.1016/j.cej.2020.128280 DOI: https://doi.org/10.1016/j.cej.2020.128280
Wols, B. A., & Hofman-Caris, C. H. (2012). Review of Photochemical Reaction Constants of Organic Micropollutants Required for UV Advanced Oxidation Processes in Water. Water Research, 46(9), 2815–2827. https://doi.org/10.1016/j.watres.2012.03.036 DOI: https://doi.org/10.1016/j.watres.2012.03.036
Wu, G. F., Zhu, J., Weng, G. J., Li, J. J., & Zhao, J. W. (2021). Heterodimers of Metal Nanoparticles: Synthesis, Properties, and Biological Applications. Microchimica Acta, 188(10), 1–21. https://doi.org/10.1007/s00604-021-05002-w DOI: https://doi.org/10.1007/s00604-021-05002-w
Xia, L., Xu, M., Cheng, G., Yang, L., Guo, Y., Li, D., Fang, D., Zhang, Q., & Liu, H. (2018). Facile Construction of Ag Nanoparticles Encapsulated into Carbon Nanotubes With Robust Antibacterial Activity. Carbon, 130, 775–781. https://doi.org/10.1016/j.carbon.2018.01.073 DOI: https://doi.org/10.1016/j.carbon.2018.01.073
Xiang, W., Zhang, Y., Lin, H., & Liu, C. J. (2017). Nanoparticle/metal-Organic Framework Composites for Catalytic Applications : Current Status and Perspective. Molecules, 22(12), 2103. https://doi.org/10.3390/molecules22122103 DOI: https://doi.org/10.3390/molecules22122103
Xie, Y. Y., Hu, X. H., Zhang, Y. W., Wahid, F., Chu, L. Q., Jia, S. R., & Zhong, C. (2020). Development and Antibacterial Activities of Bacterial Cellulose/Graphene Oxide-CuO Nanocomposite Films. Carbohydrate Polymers, 229, 115456. https://doi.org/10.1016/j.carbpol.2019.115456 DOI: https://doi.org/10.1016/j.carbpol.2019.115456
Yadav, N., Tyagi, M., Wadhwa, S., Mathur, A., & Narang, J. (2020). Few Biomedical Applications of Carbon Nanotubes. In Methods in Enzymology (Vol. 630, pp. 347–363). Academic Press. https://doi.org/10.1016/bs.mie.2019.11.005 DOI: https://doi.org/10.1016/bs.mie.2019.11.005
Yang, K., & Xing, B. (2010). Adsorption of Organic Compounds by Carbon Nanomaterials in Aqueous Phase: Polanyi Theory and its Application. Chemical Reviews, 110(10), 5989–6008. https://doi.org/10.1021/cr100059s DOI: https://doi.org/10.1021/cr100059s
Yang, L., Huang, J. N., Ji, W., & Mao, M. (2020). Investigations of a New Combined Application of Nanofluids in Heat Recovery and Air Purification. Powder Technology, 360, 956–966. https://doi.org/10.1016/j.powtec.2019.10.053 DOI: https://doi.org/10.1016/j.powtec.2019.10.053
Yin, R., Chen, Y., He, S., Li, W., Zeng, L., Guo, W., & Zhu, M. (2020). In Situ Photoreduction Of Structural Fe(III) in a Metal-Organic Framework for Peroxydisulfate Activation and Efficient Removal of Antibiotics in Real Wastewater. Journal of Hazardous Materials, 388, 121996. https://doi.org/10.1016/j.jhazmat.2019.121996 DOI: https://doi.org/10.1016/j.jhazmat.2019.121996
Yonogi, S., Matsuda, S., Kawai, T., Yoda, T., Harada, T., Kumeda, Y., Gotoh, K., Hiyoshi, H., Nakamura, S., Kodama, T., & Iida, T. (2014). BEC, a Novel Enterotoxin of Clostridium Perfringens Found in Human Clinical Isolates from Acute Gastroenteritis Outbreaks. Infection and Immunity, 82(6), 2390–2399. https://doi.org/10.1128/IAI.01759-14 DOI: https://doi.org/10.1128/IAI.01759-14
Yu, R., Wang, H., Wang, R., Zhao, P., Chen, Y., Liu, G., & Liao, X. (2022). Polyphenol Modified Natural Collagen Fibrous Network Towards Sustainable and Antibacterial Microfiltration Membrane for Efficient Water Disinfection. Water Research, 218, 118469. https://doi.org/10.1016/j.watres.2022.118469 DOI: https://doi.org/10.1016/j.watres.2022.118469
Yu, R., Zhu, R., Jiang, J., Liang, R., Liu, X., & Liu, G. (2021). Mussel-Inspired Surface Functionalization of Polyamide Microfiltration Membrane with Zwitterionic Silver Nanoparticles for Efficient Anti-Biofouling Water Disinfection. Journal of Colloid and Interface Science, 598, 302–313. https://doi.org/10.1016/j.jcis.2021.04.040 DOI: https://doi.org/10.1016/j.jcis.2021.04.040
Yu, Y., Zhou, Z., Huang, G., Cheng, H., Han, L., Zhao, S., Chen, Y., & Meng, F. (2022). Purifying Water With Silver Nanoparticles (AgNPs)-Incorporated Membranes: Recent Advancements and Critical Challenges. Water Research, 118901. https://doi.org/10.1016/j.watres.2022.118901 DOI: https://doi.org/10.1016/j.watres.2022.118901
Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P., & Wang, Q. (2018). Stable Metal-Organic frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. https://doi.org/10.1002/adma.201704303 DOI: https://doi.org/10.1002/adma.201870277
Zaharia, M. M., Ghiorghita, C. A., Trofin, M. A., Doroftei, F., Rosca, I., & Mihai, M. (2022). Multifunctional Composites of Zwitterionic Resins and Silver Nanoparticles for Point-of-Demand Antimicrobial Applications. Materials Chemistry And Physics, 275, 125225. https://doi.org/10.1016/j.matchemphys.2021.125225 DOI: https://doi.org/10.1016/j.matchemphys.2021.125225
Zaki, S. A., Eltarahony, M. M., & Abd-El-Haleem, D. A. (2019). Disinfection of Water and Wastewater by Biosynthesized Magnetite and Zerovalent Iron Nanoparticles Via NAP-NAR Enzymes of Proteus Mirabilis 10B. Environmental Science and Pollution Research, 26(23), 23661–23678. https://doi.org/10.1007/s11356-019-05479-2 DOI: https://doi.org/10.1007/s11356-019-05479-2
Zeng, T., Zhang, X., Wang, S., Niu, H., & Cai, Y. (2015). Spatial Confinement of a Co₃O₄ Catalyst in Hollow Metal-Organic Frameworks as a Nanoreactor for Improved Degradation of Organic Pollutants. Environmental Science & Technology, 49(4), 2350–2357. https://doi.org/10.1021/es505014z DOI: https://doi.org/10.1021/es505014z
Zhang, C. M., Xu, L. M., Xu, P. C., & Wang, X. C. (2016). Elimination of Viruses from Domestic Wastewater: Requirements and Technologies. World Journal of Microbiology and Biotechnology, 32(4), 1–9. https://doi.org/10.1007/s11274-016-2018-3 DOI: https://doi.org/10.1007/s11274-016-2018-3
Zhang, D., Zhao, Y. X., Gao, Y. J., Gao, F. P., Fan, Y. S., Li, X. J., Duan, Z. Y., & Wang, H. (2013a). Anti-Bacterial and in Vivo Tumor Treatment by Reactive Oxygen Species Generated by Magnetic Nanoparticles. Journal of Materials Chemistry B, 1(38), 5100–5107. https://doi.org/10.1039/c3tb20907e DOI: https://doi.org/10.1039/c3tb20907e
Zhang, H., Deng, X., Ma, Q., Cui, Y., Cheng, X., Xie, M., Li, X., & Cheng, Q. (2018). Fabrication of Silver Decorated Graphene Oxide Composite for Photocatalytic Inactivation of Escherichia coli. Journal of Nanoscience and Nanotechnology, 18(4), 2304–2309. https://doi.org/10.1166/jnn.2018.14533 DOI: https://doi.org/10.1166/jnn.2018.14533
Zhang, L., Lin, C. Y., Zhang, D., Gong, L., Zhu, Y., Zhao, Z., Xu, Q., Li, H., & Xia, Z. (2019). Guiding Principles for Designing Highly Efficient Metal-Free Carbon Catalysts. Advanced Materials, 31(13), 1805252. https://doi.org/10.1002/adma.201805252 DOI: https://doi.org/10.1002/adma.201805252
Zhang, W., Li, Y., Niu, J., & Chen, Y. (2013b). Photogeneration of Reactive Oxygen Species On Uncoated Silver, Gold, Nickel, and Silicon Nanoparticles and Their Antibacterial Effects. Langmuir, 29(15), 4647–4651. https://doi.org/10.1021/la400500t DOI: https://doi.org/10.1021/la400500t
Zhang, X., Gao, B., Fang, J., Zou, W., Dong, L., Cao, C., Zhang, J., Li, Y., & Wang, H. (2019). Chemically Activated Hydrochar as an Effective Adsorbent for Volatile Organic Compounds (VOCs). Chemosphere, 218, 680–686. https://doi.org/10.1016/j.chemosphere.2018.11.144 DOI: https://doi.org/10.1016/j.chemosphere.2018.11.144
Zhang, Y., Yang, J. C., Fu, M. L., Yuan, B., & Gupta, K. (2019). One-Step Fabrication of Recycled Ag Nanoparticles/Graphene Aerogel with High Mechanical Property for Disinfection and Catalytic Reduction of 4-Nitrophenol. Environmental Technology, 40(25), 3381–3391. https://doi.org/10.1080/09593330.2018.1473503 DOI: https://doi.org/10.1080/09593330.2018.1473503
Zhao, S. N., Wang, G., Poelman, D., & Van Der Voort, P. (2018). Metal-Organic Frameworks Based Materials for Heterogeneous Photocatalysis. Molecules, 23(11), 2947. https://doi.org/10.3390/molecules23112947 DOI: https://doi.org/10.3390/molecules23112947
Zheng, B., Fan, J., Chen, B., Qin, X., Wang, J., Wang, F., Deng, R., & Liu, X. (2022). Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews, 122(6), 5519–5603. https://doi.org/10.1021/acs.chemrev.1c00644 DOI: https://doi.org/10.1021/acs.chemrev.1c00644
Zhou, J., Chen, Y., Lan, L., Zhang, C., Pan, M., Wang, Y., Han, B., Wang, Z., Jiao, J., & Chen, Q. (2019). A Novel Catalase Mimicking Nanocomposite of Mn (II)-Poly-L-Histidine-Carboxylated multi Walled Carbon Nanotubes and the Application To Hydrogen Peroxide Sensing. Analytical Biochemistry, 567, 51–62. https://doi.org/10.1016/j.ab.2018.12.007 DOI: https://doi.org/10.1016/j.ab.2018.12.007
Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., Silva, A. M., & Santini, A. (2020). Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules, 25(16), 3731. https://doi.org/10.3390/molecules25163731 DOI: https://doi.org/10.3390/molecules25163731
World Health Organization. (n.d.). Drinking water. World Health Organization. Retrieved October 6, 2025.
World Health Organization. (n.d.). Drinking-Water Quality guidelines. World Health Organization. Retrieved October 6, 2025.
World Health Organization. (2022). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda (4th ed.). World Health Organization.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dr. Navpreet Kaur

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.















