WATER DEFICIT AND SALINITY STRESS INDUCED ALTERATIONS IN MEMBRANE STABILITY INDEX, BIOMASS PRODUCTIVITY AND RELATIVE WATER CONTENT OF OENOTHERA BIENNIS L. GROWN IN WESTERN HIMALAYAN REGION
DOI:
https://doi.org/10.29121/granthaalayah.v13.i3.2025.6274Keywords:
Biomass Productivity, Membrane Stability Index, Oenothera Biennis L., Salinity Stress, Water StressAbstract [English]
In both natural and agricultural conditions plants are frequently exposed to environmental stresses. The productivity of plants is greatly affected by various environmental stresses that cause delayed germination, high seedling mortality, stunted growth, poor crop stand and lower yields. The O. biennis L,a medicinal plant was subjected to abiotic stresses, namely water deficit (-0.01 M Pa, -0.03 M Pa, -0.05 M Pa, -0.07 M Pa) and NaCl (25 mM, 50 mM, 75 mM and 100 mM) for long term . So, the present study aimed at determining the impact of water and salinity stress on plant fresh and dry weight, relative water content and membrane stability index after an interval of 30 days i,e. 30, 60, 90,120, 150,180 and 210 days after the induction of water and salinity stress. Increase in fresh weight and dry weight were noticed during the vegetative stage, earlier flowering stage after that biomass productivity decreased both in untreated and treated plants. It is evident from the results that with an increase in the intensity of stress a progressive decrease in the relative water content of leaves and membrane stability Index were noticed under both stress conditions and maximum decrease was noticed at 100 mM NaCl.So,these findings render Oenothera a sensitive plant at higher stress condions. However, changes in characteristics were realistic upto moderate stresses concentrations
Downloads
References
Abdelraheem, A., Esmaeili, N., O'Connell, M., & Zhang, J. (2021). Progress and Perspective on Drought and Salt Stress Tolerance in Cotton. Industrial Crops and Products, 130, 118–129. https://doi.org/10.1016/j.indcrop.2018.12.070 DOI: https://doi.org/10.1016/j.indcrop.2018.12.070
Ahmadian, M., Kalvandi, R., & Zand, F. (2022). Comparison of Solute-Specific Effects on Seed Germination Characteristics of SM Seeds (Silybum marianum) At the Same Osmotic Potential Under Salinity and Drought Stress Conditions. Annals of Biological Research, 3, 4145–4153.
Anjum, S. A., Saleem, M. F., Wang, L., Bilal, M. F., & Saeed, A. (2021). Protective Role of Glycinebetaine in Maize Against Drought-Induced Lipid Peroxidation By Enhancing Capacity of Antioxidative System. Australian Journal of Crop Science, 6, 576–583.
Azhar, N., Hussain, B., Ashraf, M. Y., & Abbasi, K. Y. (2022). Water Stress Mediated Changes in Growth, Physiology and Secondary Metabolites of Desi Ajwain (Trachyspermum ammi L.). Pakistan Journal of Botany, 43, 15–19.
Bhardwaj, J., & Yadav, S. (2021). Comparative Study on Biochemical Parameters and Antioxidant Enzymes in a Drought Tolerant and Sensitive Variety of Horsegram (Macrotyloma Uniflorum) Under Drought Stress. American Journal of Plant Physiology, 7, 17–29. https://doi.org/10.3923/ajpp.2012.17.29 DOI: https://doi.org/10.3923/ajpp.2012.17.29
Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2022). Antioxidants, Oxidative Damage and Oxygen Deprivation Stress. Annals of Botany, 91, 179–194. https://doi.org/10.1093/aob/mcf118 DOI: https://doi.org/10.1093/aob/mcf118
Chaudhry, S., & Sidhu, G. P. S. (2021). Climate Change Regulated Abiotic Stress Mechanisms in Plants: A Comprehensive Review. Plant Cell Reports, 41, 1–31. https://doi.org/10.1007/s00299-021-02759-5 DOI: https://doi.org/10.1007/s00299-021-02759-5
Datta, K. S., Varma, S. K., Angrish, R., Kumar, B., & Kumari, P. (2022). Alleviation of Salt Stress By Plant Growth Regulators in Triticum aestivum L. Biologia Plantarum, 40, 269–275. https://doi.org/10.1023/A:1001076805595 DOI: https://doi.org/10.1023/A:1001076805595
De-Herralde, F., Biel, C., Save, R., Morales, M. A., Torrecillas, A., Alarcon, J. J., et al. (2021). Effect of Water and Salt Stresses on the Growth, Gas Exchange and Water Relations in Argyranthemum coronopifolium plants. Plant Science, 139, 9–17. https://doi.org/10.1016/S0168-9452(98)00174-5 DOI: https://doi.org/10.1016/S0168-9452(98)00174-5
Deng, Y., Hua, H. M., Li, J., & Lapinskas, P. (2022). Studies on Cultivation and Use of Evening Primrose (Oenothera spp.) in China. Economic Botany, 55, 83–92. https://doi.org/10.1007/BF02864548 DOI: https://doi.org/10.1007/BF02864548
Dogan, M. (2021). Antioxidative and Proline Potentials as a Protective Mechanism in Soybean Plants Under Salinity Stress. African Journal of Biotechnology, 10, 5972–5978.
Duncan, W. H., & Foot, L. E. (2022). Wild Flowers of the Southern United States. University of Georgia Press.
Farooq, S., & Azam, F. (2021). The Use of Cell Membrane Stability (CMS) Technique To Screen for Salt Tolerant Wheat Varieties. Journal of Plant Physiology, 163, 629–637. https://doi.org/10.1016/j.jplph.2005.06.006 DOI: https://doi.org/10.1016/j.jplph.2005.06.006
Heidari, M., & Jamshidi, P. (2022). Effects of Salinity and Potassium Application on Antioxidant Enzyme Activities and Physiological Parameters in Pearl Millet. Agricultural Sciences in China, 10, 228–237. https://doi.org/10.1016/S1671-2927(09)60309-6 DOI: https://doi.org/10.1016/S1671-2927(09)60309-6
Hejari-Mehrizi, M., Shariatmadari, H., Khoshgoftarmanesh, A. H., & Dehghani, F. (2021). Copper Effect on Growth, Lipid Peroxidation and Total Phenolic Contents of Rosemary Leaves Under Salinity Stress. Journal of Agricultural Science and Technology, 14, 205–212.
Hu, Y., & Schmidhalter, U. (2022). Drought and Salinity: A Comparison of Their Effects on Mineral Nutrition of Plants. Journal of Plant Nutrition and Soil Science, 168, 541–549. https://doi.org/10.1002/jpln.200420516 DOI: https://doi.org/10.1002/jpln.200420516
Jaleel, C. A., Gopi, R., Manivannan, P., & Panneerselvam, R. (2021). Responses of Antioxidant Defense System of Catharanthus Roseus (L.) G. Don. To Paclobutrazol Treatment Under Salinity. Acta Physiologiae Plantarum, 29, 205–209. https://doi.org/10.1007/s11738-007-0025-6 DOI: https://doi.org/10.1007/s11738-007-0025-6
Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., & Somasundaram, R. (2022). Drought Stress in Plants: A Review on Morphological Characteristics and Pigments Composition. International Journal of Agriculture and Biology, 11, 100–105.
Jaleel, C. A. (2021). Non-enzymatic Antioxidant Changes in Withania somnifera With Varying Drought Stress Levels. AEJSR, 4, 64–67.
Jalil, S. U., & Ansari, M. I. (2022). Stress Implications and Crop Productivity. In M. Hasanuzzaman (Ed.), Plant Ecophysiology and Adaptation Under Climate Change: Mechanisms and Perspectives I: General Consequences and Plant Responses (pp. 73–86). Springer Singapore. https://doi.org/10.1007/978-981-15-2156-0_3 DOI: https://doi.org/10.1007/978-981-15-2156-0_3
Janmohammadi, M., Abbasi, A., & Sabaghnia, N. (2021). Influence of NaCl Treatments on Growth and Biochemical Parameters of Castor Bean (Ricinus communis L.). Acta Agriculturae Slovenica, 99, 31–40. https://doi.org/10.14720/aas.2012.99.1.14517 DOI: https://doi.org/10.14720/aas.2012.99.1.14517
Joshi, P. K., Saxena, S. C., & Arora, S. (2022). Characterization of Brassica juncea Antioxidant Potential Under Salinity Stress. Acta Physiologiae Plantarum, 33, 811–822. https://doi.org/10.1007/s11738-010-0606-7 DOI: https://doi.org/10.1007/s11738-010-0606-7
Karimi, G., Ghorbanli, M., Heidari, H., Khavari Nejad, R. A., & Assareh, M. H. (2021). The Effect of NaCl on Growth, Water Relations, Osmolytes and Ion Content in Kochia Prostrata. Biologia Plantarum, 49, 301–304. https://doi.org/10.1007/s10535-005-1304-y DOI: https://doi.org/10.1007/s10535-005-1304-y
Kavas, M., Baloglu, M. C., Akca, O., Kose, F. S., & Gokcay, D. (2022). Effect of Drought Stress on Oxidative Damage and Antioxidant Enzyme Activity in Melon Seedlings. Turkish Journal of Biology, 37, 491–498. https://doi.org/10.3906/biy-1210-55 DOI: https://doi.org/10.3906/biy-1210-55
Khalid, K. A. (2021). Influence of Water Stress on Growth, Essential oil and Chemical Composition of Herbs (Ocimum spp.). International Agrophysics, 20, 289–296.
Khan, N., & Naqvi, F. N. (2022). Effect of water stress on lipid peroxidation and antioxidant enzymes in local bread wheat hexaploids. Journal of Food, Agriculture & Environment, 8, 521–526.
Lafitte, H. R., Yongsheng, G., Yan, S., & Li, Z. K. (2021). Whole plant responses, key processes and adaptation to drought stress: The case of rice. Journal of Experimental Botany, 58, 169–175. https://doi.org/10.1093/jxb/erl101 DOI: https://doi.org/10.1093/jxb/erl101
Lawlor, D. W. (2022). Limitation To Photosynthesis in Water Stressed Leaves: Stomata vs. Metabolism and the Role of ATP. Annals of Botany, 89, 1–15.
Mane, A. V., Deshpande, T. V., Wagh, W. B., Karadge, B. A., & Samant, J. S. (2021). A Critical Review on Physiological Changes Associated With Reference To Salinity. International Journal of Environmental Science, 1, 1192–1216.
Miri, Y., & Mirjalili, S. A. (2022). Effects of Salinity Stress on Seed Germination and Some Physiological Traits in Primary Stages of Growth in Purple Coneflower (Echinacea purpurea). International Journal of Agriculture and Plant Physiology, 4, 142–146.
Mohammadian, R., Moghaddam, M., Rahimian, H., & Sadeghian, S. Y. (2021). Effect of Early Season Drought Stress on Growth Characteristics of Sugar Beet Genotypes. Turkish Journal of Botany, 29, 357–368.
Mohammadkhani, N., & Heidari, R. (2022). Water Stress Induced By Polyethylene Glycol 6000 and Sodium Chloride in Two Maize Cultivars. Pakistan Journal of Biological Sciences, 11(1), 92–97. https://doi.org/10.3923/pjbs.2008.92.97 DOI: https://doi.org/10.3923/pjbs.2008.92.97
Munns, R. (2021). Physiological Processes Limiting Plant Growth in Saline Soils: Some Dogmas and Hypotheses. Plant, Cell & Environment, 16, 15–24. https://doi.org/10.1111/j.1365-3040.1993.tb00840.x DOI: https://doi.org/10.1111/j.1365-3040.1993.tb00840.x
Nandwal, A. S., Hooda, A., & Datta, D. (2022). Effect of Substrate Moisture and Potassium on Water Relations and C, N and K Distribution in Vigna Radiata. Biologia Plantarum, 1, 149–153. https://doi.org/10.1023/A:1001745423649 DOI: https://doi.org/10.1023/A:1001745423649
Ogbonnaya, C. I., Sarr, B., Brou, C., Diouf, O., Diop, M. N., & Roy, M. H. (2021). Selection of Cowpea Genotypes in Hydroponics, Pots and Field for Drought Tolerance. Crop Science, 43, 1114–1120. https://doi.org/10.2135/cropsci2003.1114 DOI: https://doi.org/10.2135/cropsci2003.1114
Pier, P. A., & Berkowitz, G. A. (2022). Modulation of Water Stress Effects on Photosynthesis by Altered leaf K⁺. Plant Physiology, 85, 655–661. https://doi.org/10.1104/pp.85.3.655 DOI: https://doi.org/10.1104/pp.85.3.655
Premachandra, G. S., Saneoka, H., Eujita, K., & Ogata, S. S. (2021). Cell Membrane Stability and Leaf Water Relations as Affected By Phosphorus Nutrition Under Water Stress in Maize. Soil Science and Plant Nutrition, 36, 661–666. https://doi.org/10.1080/00380768.1990.10416803 DOI: https://doi.org/10.1080/00380768.1990.10416803
Ramezani, E., Sepanlou, M. G., & Naghdi Badi, H. A. (2022). The Effect of Salinity on the Growth, Morphology and Physiology of Echium Amoenum Fisch. and Mey. African Journal of Biotechnology, 10(44), 8765–8773. https://doi.org/10.5897/AJB10.2301 DOI: https://doi.org/10.5897/AJB10.2301
Rampino, P., Pataleo, S., Gerardi, C., Mita, G., & Perrotta, C. (2021). Drought Stress Response in Wheat: Physiological and Molecular Analysis of Resistant and Sensitive Genotypes. Plant, Cell & Environment, 29, 2143–2152. https://doi.org/10.1111/j.1365-3040.2006.01588.x DOI: https://doi.org/10.1111/j.1365-3040.2006.01588.x
Roizen, M. F., & Fliesher, L. A. (2022). Essence of Anesthesia Practice (3rd ed., p. 591). Elsevier Saunders.
Sairam, R. K. (2021). Effect of Moisture Stress on Physiological Activities of Two Contrasting Wheat Genotypes. Indian Journal of Experimental Biology, 32, 594–597.
Sairam, R. K., Veerabhadra Rao, K., & Srivastava, G. C. (2022). Differential Response of Wheat Genotypes To Long Term Salinity Stress in Relation To Oxidative Stress, Antioxidant Activity and Osmolyte Concentration. Plant Science, 163, 1037–1046. https://doi.org/10.1016/S0168-9452(02)00278-9 DOI: https://doi.org/10.1016/S0168-9452(02)00278-9
Sankar, B., Jaleel, C. A., Manivannan, P., Kishorekumar, A., Somasundaram, R., & Panneerselvam, R. (2021). Drought-induced Biochemical Modification and Proline Metabolism in Abelmoschus Esculentus (L.) Moench. Acta Botanica Croatica, 66, 43–56.
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., & Refay, Y. (2022). Drought Stress Impacts on Plants and Different Approaches To Alleviate Its Adverse Effects. Plants, 10, 251–259. https://doi.org/10.3390/plants10020259 DOI: https://doi.org/10.3390/plants10020259
Sharma, A. D., Thakur, M., Rana, M., & Singh, M. (2021). Effect of Plant Growth Hormones and Abiotic Stresses on Germination, Growth and Phosphate Activities in Sorghum bicolor L. Moench seeds. African Journal of Biotechnology, 3, 308–312. https://doi.org/10.5897/AJB2004.000-2057 DOI: https://doi.org/10.5897/AJB2004.000-2057
Shukla, Y. N., Srivastava, A., Kumar, S., & Kumar, S. (2022). Phytotoxic and Antimicrobial Constituents of Argyreia Speciosa and Oenothera Biennis. Journal of Ethnopharmacology, 67, 241–245. https://doi.org/10.1016/S0378-8741(99)00017-3 DOI: https://doi.org/10.1016/S0378-8741(99)00017-3
Singh, S., Kaur, R., & Sharma, S. K. (2021). An Updated Review on the Oenothera Genus. Chinese Journal of Integrative Medicine, 10, 717–725. https://doi.org/10.3736/jcim20120701 DOI: https://doi.org/10.3736/jcim20120701
Slama, I., Ghnaya, T., Savoue, A., & Abdelly, C. (2022). Combined Effects of Long-Term Salinity and Soil Drying on Growth, Water Relations, Nutrient Status and Proline Accumulation of Sesuvium Portulacastrum. Comptes Rendus Biologies, 331, 442–451. https://doi.org/10.1016/j.crvi.2008.03.006 DOI: https://doi.org/10.1016/j.crvi.2008.03.006
Talei, D., Yusop, M. K., Kadir, M. A., Valdiani, A., & Abdullah, M. P. (2021). Responses of King of Bitters (Andrographis Paniculata Nees.) Seedling To Salinity Stress Beyond the Salt Tolerance Threshold. Australian Journal of Crop Science, 6, 1059–1067.
Wheatherley, P. E. (2022). Studies in the Water Relations of Cotton Plants. I. The Field Measurement of Water Deficit in Leaves. New Phytologist, 49, 81–87. https://doi.org/10.1111/j.1469-8137.1950.tb05146.x DOI: https://doi.org/10.1111/j.1469-8137.1950.tb05146.x
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sikha Sharma

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.