OPTIMIZING SECURE ROUTING PROTOCOLS FOR RESILIENCE NETWORK COMMUNICATIONS
DOI:
https://doi.org/10.29121/granthaalayah.v13.i6.2025.6221Keywords:
Optimizing, Routing Protocols, Network Communication, Secure Routing, SecurityAbstract [English]
Routing protocols are very crucial in wired and wireless networks, as they ensure that data packets are efficiently transmitted from a source to their intended destination. These protocols determine the best data route, controlling traffic flow, avoiding congestion, and maintaining communication between routers. Routing protocols are prone to attacks that aim at manipulating or disrupting the operations of the routing protocols. The primary objective of this research is to enhance the security of routing protocols by reducing their vulnerability to attacks while maintaining efficient network performance. A mixed-method approach involving qualitative and quantitative techniques was used. The proposed protocol was compared with BGP, OSPF, AODV, and DSR. Results show that the proposed protocol achieves a high PDR of 95%, while baseline protocols were considerably low, depicting efficiency in terms of the dependability of the protocol to sustain communication in unfavourable scenarios reliably. Besides, the average latency of the proposed protocol is 30 ms, which proves its potential to support time-critical applications that require real-time data delivery. It was observed from the average latency that the value for the proposed protocol was the smallest, about 30 ms, which was sharply different from other protocols; the average latencies for BGP, OSPF, AODV, and DSR were 50 ms, 40 ms, 60 ms, and 55 ms, respectively. The lower latency of the proposed secure routing protocol indicates that it is efficient in packet processing and also capable of supporting applications sensitive to delays like voice and video communication.
Downloads
References
Abd El-Moghith, I. A., & Darwish, S. M. (2021). Towards Designing a Trusted Routing Scheme in Wireless Sensor Networks: A New Deep Blockchain Approach. IEEE Access, 9, 103822–103834. https://doi.org/10.1109/ACCESS.2021.3098933 DOI: https://doi.org/10.1109/ACCESS.2021.3098933
Abdulazeez, A., Salim, B., Zeebaree, D., & Doghramachi, D. (2020, November 10). Comparison of VPN Protocols at the Network Layer Focusing on Wireguard Protocol. Learning & Technology Library (LearnTechLib). https://doi.org/10.3991/ijim.v14i18.16507 DOI: https://doi.org/10.3991/ijim.v14i18.16507
Abiodun, O. I., Abiodun, E. O., Alawida, M., Alkhawaldeh, R. S., & Arshad, H. (2021). A Review on the Security of the Internet of Things: Challenges and Solutions. Wireless Personal Communications, 119(3), 2603–2637. https://doi.org/10.1007/s11277-021-08348-9 DOI: https://doi.org/10.1007/s11277-021-08348-9
Ahmed, A., Bakar, K. A., Channa, M. I., & Khan, A. W. (2016). A Secure Routing Protocol with Trust and Energy Awareness for Wireless Sensor Network. Mobile Networks and Applications, 21, 272–285. https://doi.org/10.1007/s11036-016-0683-y DOI: https://doi.org/10.1007/s11036-016-0683-y
Airehrour, D., Gutierrez, J., & Ray, S. K. (2016). Secure Routing for Internet of Things: A Survey. Journal of Network and Computer Applications, 66, 198–213. https://doi.org/10.1016/j.jnca.2016.03.006 DOI: https://doi.org/10.1016/j.jnca.2016.03.006
AlRubaiei, M., Jassim, H. S., Sharef, B. T., Safdar, S., Sharef, Z. T., & Malallah, F. L. (2020). Current Vulnerabilities, Challenges and Attacks on Routing Protocols for Mobile Ad Hoc Network: A Review. In Elsevier EBooks (pp. 109–129). https://doi.org/10.1016/B978-0-12-818287-1.00012-7 DOI: https://doi.org/10.1016/B978-0-12-818287-1.00012-7
Alotaibi, H. S., Gregory, M. A., & Li, S. (2022). Multidomain SDN-Based Gateways and Border Gateway Protocol. Journal of Computer Networks and Communications, 2022, 1–23. https://doi.org/10.1155/2022/3955800 DOI: https://doi.org/10.1155/2022/3955800
Asif, M., Aziz, Z., Ahmad, M. B., Khalid, A., Waris, H. A., & Gilani, A. (2022). Blockchain-Based Authentication and Trust Management Mechanism for Smart Cities. Sensors, 22(7), 2604. https://doi.org/10.3390/s22072604 DOI: https://doi.org/10.3390/s22072604
Awan, S., Sajid, M. B. E., Amjad, S., Aziz, U., Gurmani, U., & Javaid, N. (2021). Blockchain-Based Authentication and Trust Evaluation Mechanism for Secure Routing in Wireless Sensor Networks. In Lecture Notes in Networks and Systems (pp. 96–107). https://doi.org/10.1007/978-3-030-79728-7_11 DOI: https://doi.org/10.1007/978-3-030-79728-7_11
Aweya, J. (2021). IP Routing Protocols. CRC Press. https://doi.org/10.1201/9781003149040 DOI: https://doi.org/10.1201/9781003149040
Baldini, G., Hernandez-Ramos, J. L., Nowak, S., Neisse, R., & Nowak, M. (2020). Mitigation of Privacy Threats Due to Encrypted Traffic Analysis Through a Policy-Based Framework and MUD Profiles. Symmetry, 12(9), 1576. https://doi.org/10.3390/sym12091576 DOI: https://doi.org/10.3390/sym12091576
Buchanan, L., D'Amico, A., & Kirkpatrick, D. (2016, October). Mixed Method Approach to Identify Analytic Questions to be Visualized for Military Cyber Incident Handlers. In 2016 IEEE Symposium on Visualization for Cyber Security (VizSec) (pp. 1–8). IEEE. https://doi.org/10.1109/VIZSEC.2016.7739578 DOI: https://doi.org/10.1109/VIZSEC.2016.7739578
Carthern, C., Wilson, W., & Rivera, N. (2021). Routing. In Cisco Certified DevNet Associate DEVASC 200-901 Official Cert Guide (pp. 141–210). Apress. https://doi.org/10.1007/978-1-4842-6672-4_6 DOI: https://doi.org/10.1007/978-1-4842-6672-4_6
Chaeikar, S. S., Alizadeh, M., Tadayon, M. H., & Jolfaei, A. (2021). An Intelligent Cryptographic Key Management Model for Secure Communications in Distributed Industrial Intelligent Systems. International Journal of Intelligent Systems, 37(12), 10158–10171. https://doi.org/10.1002/int.22435 DOI: https://doi.org/10.1002/int.22435
Cheng, X., Liu, S., Sun, X., Wang, Z., Zhou, H., Shao, Y., & Shen, H. (2021). Combating Emerging Financial Risks in the Big Data Era: A Perspective Review. Fundamental Research, 1(5), 595–606. https://doi.org/10.1016/j.fmre.2021.08.017 DOI: https://doi.org/10.1016/j.fmre.2021.08.017
Chica, J. C. C., Imbachi, J. C., & Vega, J. F. B. (2020). Security in SDN: A Comprehensive Survey. Journal of Network and Computer Applications, 159, 102595. https://doi.org/10.1016/j.jnca.2020.102595 DOI: https://doi.org/10.1016/j.jnca.2020.102595
Clark, D. D. (2021, September 1). Towards Data-Driven Internet Routing Security [Research Report]. MIT DSpace.
Dawood, M., Tu, S., Xiao, C., Alasmary, H., Waqas, M., & Rehman, S. U. (2023). Cyberattacks and Security of Cloud Computing: A Complete Guideline. Symmetry, 15(11), 1981. https://doi.org/10.3390/sym15111981 DOI: https://doi.org/10.3390/sym15111981
Egho-Promise, E., Lyada, E., Asante, G., & Aina, F. (2024). Towards Improved Vulnerability Management in Digital Environments: A Comprehensive Framework for Cyber Security Enhancement. International Research Journal of Computer Science, 11(05), 441–449. https://doi.org/10.26562/irjcs.2024.v1105.01 DOI: https://doi.org/10.26562/irjcs.2024.v1105.01
Ekpenyong, M. E., Asuquo, D. E., Udo, I. J., Robinson, S. A., & Ijebu, F. F. (2022). IPv6 Routing Protocol Enhancements Over Low-Power and Lossy Networks for IoT Applications: A Systematic Review. New Review of Information Networking, 27(1), 30–68. https://doi.org/10.1080/13614576.2022.2078396 DOI: https://doi.org/10.1080/13614576.2022.2078396
Farahani, G. (2021). Black Hole Attack Detection Using K-Nearest Neighbor Algorithm and Reputation Calculation in Mobile Ad Hoc Networks. Security and Communication Networks, 2021, 1–15. https://doi.org/10.1155/2021/8814141 DOI: https://doi.org/10.1155/2021/8814141
Fatahi, M., Soursouri, M., Pourmohammad, P., & Ahmadi, M. (2022, March 3). Open Source Routers: A Survey. ArXiv.
Guercin, S. R. (2019). Performance Evaluation of Opportunistic Routing Protocols for Multi-Hop Wireless Networks (Doctoral Dissertation, Université d'Ottawa/University of Ottawa).
Kadam, S. S., & Ingle, D. R. (2021). Literature Review on Redistribution of Routing Protocols in Wireless Networks Using SDN Along with NFV. In Advances in Intelligent Systems and Computing (pp. 553–575). https://doi.org/10.1007/978-981-16-5301-8_41 DOI: https://doi.org/10.1007/978-981-16-5301-8_41
Kirubasri, G., Sankar, S., Pandey, D., Pandey, B. K., Nassa, V. K., & Dadheech, P. (2022). Software-Defined Networking-Based Ad Hoc Networks Routing Protocols. In EAI/Springer Innovations in Communication and Computing (pp. 95–123). https://doi.org/10.1007/978-3-030-91149-2_5 DOI: https://doi.org/10.1007/978-3-030-91149-2_5
Kowalski, M., & Mazurczyk, W. (2023). Toward the Mutual Routing Security in Wide Area Networks: A Scoping Review of Current Threats and Countermeasures. Computer Networks, 230, 109778. https://doi.org/10.1016/j.comnet.2023.109778 DOI: https://doi.org/10.1016/j.comnet.2023.109778
Li, S., Ni, Q., Sun, Y., Min, G., & Al-Rubaye, S. (2018). Energy-Efficient Resource Allocation for Industrial Cyber-Physical IoT Systems in 5G era. IEEE Transactions on Industrial Informatics, 14(6), 2618–2628. https://doi.org/10.1109/TII.2018.2799177 DOI: https://doi.org/10.1109/TII.2018.2799177
Lorincz, J., Klarin, Z., & Ožegović, J. (2021). A Comprehensive Overview of TCP Congestion Control in 5G Networks: Research Challenges and Future Perspectives. Sensors, 21(13), 4510. https://doi.org/10.3390/s21134510 DOI: https://doi.org/10.3390/s21134510
Mohamed, N. N., Yussoff, Y. M., Saleh, M. A., & Hashim, H. (2020). Hybrid Cryptographic Approach for Internet of Things Applications: A Review. Journal of Information and Communication Technology, 19, 263–284. https://doi.org/10.32890/jict2020.19.3.1 DOI: https://doi.org/10.32890/jict2020.19.3.1
Mousavi, S. K., Ghaffari, A., Besharat, S., & Afshari, H. (2021). Security of Internet of Things Based on Cryptographic Algorithms: A Survey. Wireless Networks, 27(2), 1515–1555. https://doi.org/10.1007/s11276-020-02535-5 DOI: https://doi.org/10.1007/s11276-020-02535-5
Patil, A. R., & Borkar, G. M. (2023). Node Authentication and Encrypted Data Transmission in Mobile ad Hoc Network Using the Swarm Intelligence‐Based Secure Ad‐Hoc on‐Demand Distance Vector Algorithm. IET Wireless Sensor Systems, 13(6), 201–215. https://doi.org/10.1049/wss2.12068 DOI: https://doi.org/10.1049/wss2.12068
Pitchaipillai, P. (2024). Link Reliable on-Demand Distance Vector Routing for Mobile Ad Hoc Networks. International Journal of Information Technology. https://doi.org/10.1007/s41870-024-01975-y DOI: https://doi.org/10.1007/s41870-024-01975-y
Rady, A., El‐Rabaie, E. L. M., Shokair, M., & Abdel‐Salam, N. (2021). Comprehensive Survey of Routing Protocols for Mobile Wireless Sensor Networks. International Journal of Communication Systems, 34(15), e4942. https://doi.org/10.1002/dac.4942 DOI: https://doi.org/10.1002/dac.4942
Ramamoorthy, R., & Thangavelu, M. (2020). An Improved Distance‐Based Ant Colony Optimization Routing for Vehicular Ad Hoc Networks. International Journal of Communication Systems, 33(14), e4502. https://doi.org/10.1002/dac.4502 DOI: https://doi.org/10.1002/dac.4502
Saxena, S., Bhushan, B., & Ahad, M. A. (2021). Blockchain-Based Solutions to Secure IoT: Background, Integration Trends and a Way Forward. Journal of Network and Computer Applications, 181, 103050. https://doi.org/10.1016/j.jnca.2021.103050 DOI: https://doi.org/10.1016/j.jnca.2021.103050
Singh, C., & Jain, A. K. (2024). A Comprehensive Survey on DDoS Attacks Detection & Mitigation in SDN-IoT Network. E-Prime – Advances in Electrical Engineering, Electronics and Energy, 8, 100543. https://doi.org/10.1016/j.prime.2024.100543 DOI: https://doi.org/10.1016/j.prime.2024.100543
Taherdoost, H. (2022). What are Different Research Approaches? Comprehensive Review of Qualitative, Quantitative, and Mixed Method Research, their Applications, Types, and Limitations. Journal of Management Science & Engineering Research, 5(1), 53–63. https://doi.org/10.30564/jmser.v5i1.4538 DOI: https://doi.org/10.30564/jmser.v5i1.4538
Tournier, J., Lesueur, F., Le Mouël, F., Guyon, L., & Ben-Hassine, H. (2020). A Survey of IoT Protocols and Their Security Issues Through the Lens of A Generic IoT Stack. Internet of Things, 16, 100264. https://doi.org/10.1016/j.iot.2020.100264 DOI: https://doi.org/10.1016/j.iot.2020.100264
Wylde, V., Rawindaran, N., Lawrence, J., Balasubramanian, R., Prakash, E., Jayal, A., Khan, I., Hewage, C., & Platts, J. (2022). Cybersecurity, Data Privacy and Blockchain: A Review. SN Computer Science, 3(2), 1–20. https://doi.org/10.1007/s42979-022-01020-4 DOI: https://doi.org/10.1007/s42979-022-01020-4
Yan, J., & Jin, D. (2015, June). A Virtual Time System for Linux-Container-Based Emulation of Software-Defined Networks. In Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (pp. 235–246). https://doi.org/10.1145/2769458.2769480 DOI: https://doi.org/10.1145/2769458.2769480
Yao, H., & Guizani, M. (2023). Intelligent Traffic Control. In Wireless Networks (pp. 111–209). https://doi.org/10.1007/978-3-031-26987-5_4 DOI: https://doi.org/10.1007/978-3-031-26987-5_4
Zin, S. M., Anuar, N. B., Kiah, M. L. M., & Pathan, A. S. K. (2014). Routing Protocol Design for Secure WSN: Review and Open Research Issues. Journal of Network and Computer Applications, 41, 517–530. https://doi.org/10.1016/j.jnca.2014.02.008 DOI: https://doi.org/10.1016/j.jnca.2014.02.008
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ehigiator Egho-Promise, Zeeshan Pervez, Hewa Balisane, George Asante, Folayo Aina, Halima Kure

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.