NUMERICAL ANALYSIS OF FLEXURAL STRENGTH AND DUCTILITY OF RU-NC COMPOSITE CIRCULAR COLUMNS

Authors

  • Zhizhou Bai Assistant Professor, College of Civil Engineering, Tongji University, Shanghai, China & Honorary Research Associate, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
  • John Chen Associate, Binnies Hong Kong Limited, Hong Kong, China & Honorary Research Associate, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China

DOI:

https://doi.org/10.29121/granthaalayah.v13.i6.2025.6208

Keywords:

Ultra-High Performance Concrete, Full-Range Moment-Curvature Curve, Flexural Strength and Ductility

Abstract [English]

To theoretically investigate the flexural strength and ductility of a novel composite column structure comprising a Reinforced Ultra-High Performance Concrete (RU) shell and a core Normal Concrete (NC), this study proposes a comprehensive full-range moment-curvature analysis framework. Based on the derived moment-curvature relationships, a comparative analysis is conducted between RU-NC composite circular columns and conventional NC circular columns. The results demonstrate that replacing the NC outer layer with a thin-walled UHPC shell leads to significant enhancements in both flexural strength and ductility performance. Key findings reveal that the flexural strength and ductility of both traditional NC and proposed composite RU-NC circular columns exhibit strong dependence on the applied compressive axial load level. Furthermore, these mechanical properties show a pronounced correlation with the compressive strength of UHPC. Specifically, both flexural strength and ductility are further influenced by the compressive strength of UHPC. As the UHPC compressive strength increases, these mechanical properties exhibit a marked improvement.

Downloads

Download data is not yet available.

References

Abbas, S., Soliman, A. M., & Nehdi, M. L. (2015). Exploring Mechanical and Durability Properties of Ultra-High Performance Concrete Incorporating Various Steel Fiber Lengths and Dosages. Construction and Building Materials, 75, 429–441. https://doi.org/10.1016/j.conbuildmat.2014.11.017 DOI: https://doi.org/10.1016/j.conbuildmat.2014.11.017

Abrishambaf, A., Pimentel, M., & Nunes, S. (2017). Influence of Fibre Orientation on the Tensile Behaviour of Ultra-High Performance Fibre Reinforced Cementitious Composites. Cement and Concrete Research, 97, 28–40. https://doi.org/10.1016/j.cemconres.2017.03.007 DOI: https://doi.org/10.1016/j.cemconres.2017.03.007

Attard, M. M., & Setunge, S. (1996). Stress-Strain Relationship of Confined and Unconfined Concrete. ACI Materials Journal, 93(5), 432–442. https://doi.org/10.14359/9847 DOI: https://doi.org/10.14359/9847

Bai, Z. Z. (2006). Nonlinear Analysis of Reinforced Concrete Beams and Columns with Special Reference to Full-Range and Cyclic Behaviour [Doctoral Dissertation, The University of Hong Kong]. Proquest Dissertations & Theses Global.

Bai, Z. Z., & Au, F. T. K. (2009). Ductility of Symmetrically Reinforced Concrete Columns. Magazine of Concrete Research, 61(5), 345–357. https://doi.org/10.1680/macr.2008.00149 DOI: https://doi.org/10.1680/macr.2008.00149

Beschi, C., Meda, A., & Riva, P. (2011). Column and Joint Retrofitting with High Performance Fiber Reinforced Concrete Jacketing. Journal of Earthquake Engineering, 15(7), 989–1014. https://doi.org/10.1080/13632469.2011.552167 DOI: https://doi.org/10.1080/13632469.2011.552167

Blais, P. Y., & Couture, M. (1999). Precast, Prestressed Pedestrian Bridge—World’s First Reactive Powder Concrete Bridge. PCI Journal, 44(5), 60–71. https://doi.org/10.15554/pcij.09011999.60.71 DOI: https://doi.org/10.15554/pcij.09011999.60.71

Chen, B. C., Huang, Q. W., Su, J. Z., Guo, B., & Ma, X. L. (2021). Design and Construction of the First UHPC Highway Box-Girder Bridge in China. Journal of China and Foreign Highway, 41(5), 74–78. https://doi.org/10.14048/j.issn.1671-2579.2021.05.016

Doiron, G. (2016). Pier Repair/Retrofit Using UHPC: Examples of Completed Projects in North America. International Interactive Symposium on Ultra-High Performance Concrete, 1(1). https://doi.org/10.21838/uhpc.2016.99 DOI: https://doi.org/10.21838/uhpc.2016.99

Graybeal, B., Brühwiler, E., & Kim, B. S. (2020). International Perspective on UHPC in Bridge Engineering. Journal of Bridge Engineering, 25(11), 04020094. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001630 DOI: https://doi.org/10.1061/(ASCE)BE.1943-5592.0001630

Huang, Q. W., Wang, S. R., Huang, W., Chen, B. C., Wei, J. G., & Chen, Q. Y. (2022). Mechanical Behavior of RU-NC Composite Short Columns Under Axial Compressive Loads. Journal of Hunan University (Natural Sciences), 49(11), 137–149. https://doi.org/10.16339/j.cnki.hdxbzkb.2022124

Kravanja, G., Mumtaz, A. R., & Kravanja, S. (2024). A Comprehensive Review of the Advances, Manufacturing, Properties, Innovations, Environmental Impact and Applications of Ultra-High-Performance Concrete (UHPC). Buildings, 14(2), 382. https://doi.org/10.3390/buildings14020382 DOI: https://doi.org/10.3390/buildings14020382

Larrard, F. D., & Sedran, T. (1994). Optimization of Ultra-High-Performance Concrete by the use of a Packing Model. Cement and Concrete Research, 24(6), 997–1009. https://doi.org/10.1016/0008-8846(94)90022-1 DOI: https://doi.org/10.1016/0008-8846(94)90022-1

Lin, S. S., Huang, Q. W., Chen, B. C., & Chen, Y. H. (2017). Design of U-RC Composite Pier of Sea-Crossing Bridge. Journal of Traffic and Transportation Engineering, 17(4), 55–65.

Richard, P., & Cheyrezy, M. (1995). Composition of Reactive Powder Concretes. Cement and Concrete Research, 25(7), 1501–1511. https://doi.org/10.1016/0008-8846(95)00144-2 DOI: https://doi.org/10.1016/0008-8846(95)00144-2

Roux, N., Andrade, C., & Sanjuan, M. A. (1996). Experimental Study of Durability of Reactive Powder Concretes. Journal of Materials in Civil Engineering, 8(1), 1–6. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:1(1) DOI: https://doi.org/10.1061/(ASCE)0899-1561(1996)8:1(1)

Shaikh, F. U. A., Luhar, S., Arel, H. S., & Luhar, I. (2020). Performance Evaluation of Ultrahigh Performance Fibre Reinforced Concrete—A Review. Construction and Building Materials, 232, 117152. https://doi.org/10.1016/j.conbuildmat.2019.117152 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117152

Shan, B., Liu, G., Li, T. Y., Liu, F. C., Liu, Z., & Xiao, Y. (2021). Experimental Research on Seismic Behavior of Concrete-Filled Reactive Powder Concrete Tubular Columns. Engineering Structures, 233, 111921. https://doi.org/10.1016/j.engstruct.2021.111921 DOI: https://doi.org/10.1016/j.engstruct.2021.111921

Wille, K., Naaman, A. E., & Parra-Montesinos, G. J. (2011). Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way. ACI Materials Journal, 108(1), 34–36. https://doi.org/10.14359/51664215 DOI: https://doi.org/10.14359/51664215

Yang, J., & Fang, Z. (2009). Flexural Behaviors of Ultra-High Performance Concrete T Beams Prestressed with CFRP Tendons. Journal of the China Railway Society, 31(2), 94–103. https://doi.org/10.3969/j.issn.1001-8360.2009.02.018

Downloads

Published

2025-06-30

How to Cite

Bai, Z., & Chen, J. (2025). NUMERICAL ANALYSIS OF FLEXURAL STRENGTH AND DUCTILITY OF RU-NC COMPOSITE CIRCULAR COLUMNS. International Journal of Research -GRANTHAALAYAH, 13(6), 11–19. https://doi.org/10.29121/granthaalayah.v13.i6.2025.6208