SMART MOVIE RECOMMENDER: LEVERAGING COLLABORATIVE FILTERING FOR ENHANCED USER EXPERIENCE
DOI:
https://doi.org/10.29121/granthaalayah.v12.i6.2024.6103Keywords:
Collaborative Filtering, Movie Attributes, Personalized, Implemented in PythonAbstract [English]
This project presents a movie recommendation system using collaborative filtering, which predicts user preferences based on the behavior of similar users. Unlike content-based approaches that rely on movie attributes, this method uses past user interactions to generate personalized and diverse suggestions. The system, implemented in Python, processes user IDs, movie ratings, item IDs, and timestamps to compute correlations and similarities between users.
Key advantages of the approach include independence from item metadata, scalability across various content types, and the ability to suggest unexpected yet relevant items. Inspired by real-world systems like Netflix and Amazon, this model aims to improve recommendation accuracy and user satisfaction through data-driven personalization.
Downloads
References
Adomavicius, G., & Tuzhilin, A. (2005). Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749. https://doi.org/10.1109/TKDE.2005.99 DOI: https://doi.org/10.1109/TKDE.2005.99
Adomavicius, G., & Tuzhilin, A. (2011). Context-aware recommender systems. Recommender Systems Handbook. https://doi.org/10.1007/978-0-387-85820-3_7 DOI: https://doi.org/10.1145/1864708.1864801
Basu, C., Hirsh, H., & Cohen, W. (1998). Recommendation as classification: Using social and content-based information in recommendation. AAAI/IAAI.
Bennett, J., & Lanning, S. (2007). The Netflix prize. KDD Cup and Workshop.
Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2013.03.012 DOI: https://doi.org/10.1016/j.knosys.2013.03.012
Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction. https://doi.org/10.1023/A:1021240730564 DOI: https://doi.org/10.1023/A:1021240730564
Burke, R. (2007). Hybrid web recommender systems. The Adaptive Web. https://doi.org/10.1007/978-3-540-72079-9_12 DOI: https://doi.org/10.1007/978-3-540-72079-9_12
Celma, Ò. (2010). Music recommendation and discovery in the long tail. Springer. https://doi.org/10.1007/978-3-642-13287-2 DOI: https://doi.org/10.1007/978-3-642-13287-2
Friedman, B., & Nissenbaum, H. (1996). Bias in computer systems. ACM Transactions on Information Systems. https://doi.org/10.1145/230538.230561 DOI: https://doi.org/10.1145/230538.230561
Harper, F. M., & Konstan, J. A. (2015). The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems, 5(4), 1-19. https://doi.org/10.1145/2827872
Harper, F. M., & Konstan, J. A. (2015). The MovieLens datasets: History and context. ACM Transactions on Interactive Intelligent Systems. https://doi.org/10.1145/2827872 DOI: https://doi.org/10.1145/2827872
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017). Neural collaborative filtering. WWW. https://doi.org/10.1145/3038912.3052569 DOI: https://doi.org/10.1145/3038912.3052569
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems. https://doi.org/10.1145/963770.963772 DOI: https://doi.org/10.1145/963770.963772
Hofmann, T. (2004). Latent semantic models for collaborative filtering. ACM Transactions on Information Systems. https://doi.org/10.1145/963770.963774 DOI: https://doi.org/10.1145/963770.963774
Joachims, T., Swaminathan, A., & de Rijke, M. (2017). Deep learning with logged bandit feedback. ICLR.
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix Factorization Techniques for Recommender Systems. Computer, 42(8), 30-37. https://doi.org/10.1109/MC.2009.263
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. IEEE Computer. https://doi.org/10.1109/MC.2009.263 DOI: https://doi.org/10.1109/MC.2009.263
Lam, X. N., Vu, T., Le, T. D., & Duong, A. D. (2008). Addressing cold-start problem in recommendation systems. Proceedings of the 2nd International Conference on Ubiquitous Information Management and Communication. https://doi.org/10.1145/1352793.1352837 DOI: https://doi.org/10.1145/1352793.1352837
McNee, S. M., Riedl, J., & Konstan, J. A. (2006). Being accurate is not enough: How accuracy metrics have hurt recommender systems. CHI. https://doi.org/10.1145/1125451.1125659 DOI: https://doi.org/10.1145/1125451.1125659
Paterek, A. (2007). Improving regularized singular value decomposition for collaborative filtering. KDD Cup.
Pazzani, M., & Billsus, D. (2007). Content-based recommendation systems. The Adaptive Web. https://doi.org/10.1007/978-3-540-72079-9_10 DOI: https://doi.org/10.1007/978-3-540-72079-9_10
Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2009). BPR: Bayesian personalized ranking from implicit feedback. UAI.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: An open architecture for collaborative filtering of netnews. CSCW. https://doi.org/10.1145/192844.192905 DOI: https://doi.org/10.1145/192844.192905
Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to Recommender Systems Handbook. Springer. https://doi.org/10.1007/978-0-387-85820-3_1 DOI: https://doi.org/10.1007/978-0-387-85820-3
Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. McGraw-Hill.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based Collaborative Filtering Recommendation Algorithms. WWW Conference. https://doi.org/10.1145/371920.372071
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. WWW. https://doi.org/10.1145/371920.372071 DOI: https://doi.org/10.1145/371920.372071
Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and Metrics for Cold-Start Recommendations. SIGIR. https://doi.org/10.1145/564376.564421 DOI: https://doi.org/10.1145/564376.564421
Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. Recommender Systems Handbook. https://doi.org/10.1007/978-0-387-85820-3_8 DOI: https://doi.org/10.1007/978-0-387-85820-3_8
Su, X., & Khoshgoftaar, T. M. (2009). A Survey of Collaborative Filtering Techniques. Advances in Artificial Intelligence, 2009. https://doi.org/10.1155/2009/421425
Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in Artificial Intelligence. https://doi.org/10.1155/2009/421425 DOI: https://doi.org/10.1155/2009/421425
Tintarev, N., & Masthoff, J. (2011). Designing and evaluating explanations for recommender systems. Recommender Systems Handbook. https://doi.org/10.1007/978-0-387-85820-3_15 DOI: https://doi.org/10.1007/978-0-387-85820-3_15
Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning-based recommender system: A survey and new perspectives. ACM Computing Surveys. https://doi.org/10.1145/3285029 DOI: https://doi.org/10.1145/3285029
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Manya Kamra, Yanvi Joshi, Pranav Banga, Rachna Srivastava

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.