DESIGN AND SIMULATION OF DUAL BAND H SHAPED MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS

Authors

  • Poornanand Dubey Assistant Professor, Department of Electronics & Communication, Baderia Global Institute of Engineering & Management, Jabalpur (M.P.)

DOI:

https://doi.org/10.29121/granthaalayah.v12.i3.2024.5933

Keywords:

H Shape, Patch, Patch Antenna, Substrate Height

Abstract [English]

Nowadays, microstrip patch antennas are very popular in radar and satellite communication applications due to their low profile, mechanically robust, relatively compact and small size, and the possibility of dual frequency operation Unfortunately they have some limitations, especially narrow bandwidth. This paper presents a new high gain, wide band H-shaped slot loaded microstrip patch antenna. The antenna is printed on a dielectric substrate, supported by a metal plate, and fed directly from a 50 Ω coaxial cable. There are several and well known methods to increase the bandwidth of antennas such as: use of substrate thickness, low electrode substrate, various impedance matching and fading techniques In this paper, the bandwidth of rectangular Microstrip antenna is increased by ‘H’ shaped rectangular microstrip patch antenna. In some applications where increased bandwidth is required, dual frequency patch antennas are one of the alternative solutions. The proposed antenna has a dual frequency band.

Downloads

Download data is not yet available.

References

Amman, M. (1997). Design of Microstrip Patch Antenna for the 2.4 GHz Band. Applied Microwave and Wireless, 24-34.

Balanis, C. A. (2005). Antenna Theory: Analysis and Design (2nd ed.). Wiley-Interscience.

Balanis, C. A. (2005). Antenna Theory: Analysis and Design. John Wiley & Sons, Inc.

Bhattacharya, D., & Prasanna, R. (2013). Bandwidth Enrichment for Microstrip Patch Antenna Using Pendant Techniques. International Journal of Engineering Research (IJER), 2(4), 286-289.

Chitra, R. J., Jayanthi, K., & Nagaraja, V. (2012). Design of Double U-slot Microstrip Patch Antenna Array for WiMAX. In IEEE International Conference on Green Technologies (ICGT) (130-134). https://doi.org/10.1109/ICGT.2012.6477960 DOI: https://doi.org/10.1109/ICGT.2012.6477960

Garg, R. (2001). Microstrip Antenna Design Handbook. Artech House.

Gupta, H. (2013). Design and Study of Compact and Wideband Microstrip U-Slot Patch Antenna for WI-Max Application. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), 5(2), 45-48. https://doi.org/10.9790/2834-0524548 DOI: https://doi.org/10.9790/2834-0524548

Hong, J.-S., McErlean, E. P., & Karyamapudi, B. (2006). Eighteen-pole superconducting CQ filter for future wireless applications. IEE Proceedings on Microwave Antennas and Propagation, 153, 205-211. https://doi.org/10.1049/ip-map:20050043 DOI: https://doi.org/10.1049/ip-map:20050043

Hu, C.-L., Yang, C.-F., & Lin, S.-T. (2011). A Compact Inverted-F Antenna to be Embedded in Ultra-thin Laptop Computer for LTE/WWAN/WI-MAX/WLAN Applications. IEEE Transactions on Antennas and Propagation (AP-S/USRT), 978-1-4244-9561.

Islam, M. T., Shakib, M. N., Misran, N., & Yatim, B. (2008). Analysis of Broadband Slotted Microstrip Patch Antenna. IEEE Transactions on Antennas and Propagation, AP-1-4244-2136.

Jayanthi, K., & Nagaraja, V. (2013). Design of Microstrip Slot Antenna for WiMAX Application. In IEEE International Conference on Communications and Signal Processing (ICCSP) (645-649). https://doi.org/10.1109/iMac4s.2013.6526489 DOI: https://doi.org/10.1109/iMac4s.2013.6526489

Jayanthy, T., Sugadev, M., Ismaeel, J. M., & Jegan, G. (2008). Design and Simulation of Microstrip M-Patch Antenna with Double Layer. IEEE Transactions on Antennas and Propagation, AP-978-1-4244-2690-4444. https://doi.org/10.1109/AMTA.2008.4763102 DOI: https://doi.org/10.1109/AMTA.2008.4763102

Kamarudin, M. R., Rahman, T. A., & Iddi, H. U. (2013). Multi-band Circular Patch Antenna for Wideband Application. In PIERS Proceedings (1584-1587).

Khawaja, M. (2013). Dual Band Microstrip Patch Antenna Array for Next Generation Wireless Sensor Network Applications. In International Conference on Sensor Network Security Technology and Privacy Communication System (SNS & PCS) (39-43). National University of Sciences and Technology. https://doi.org/10.1109/SNS-PCS.2013.6553831 DOI: https://doi.org/10.1109/SNS-PCS.2013.6553831

Kracchhodnok, P., & Wongsan, R. (2013). Design of a Dual-band Antenna using a Patch and Frequency Selective Surface for WLAN and WiMAX. In International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (1-4). https://doi.org/10.1109/ECTICon.2013.6559631 DOI: https://doi.org/10.1109/ECTICon.2013.6559631

Lee, K.-F., Elsherbeni, A. Z., & Driessen, P. (2013). Wide Band Dual-Beam U-Slot Microstrip Antenna. IEEE Transactions on Antennas and Propagation, 61(3), 1415-1418. https://doi.org/10.1109/TAP.2012.2228617 DOI: https://doi.org/10.1109/TAP.2012.2228617

Li, K., Ingram, M., & Rausch, E. (2002). Multibeam antennas for indoor wireless communications. IEEE Transactions on Communications, 50(2), 192-194. https://doi.org/10.1109/26.983314 DOI: https://doi.org/10.1109/26.983314

Nasir, S. A., Mustaqim, M., & Khawaja, B. A. (2013). Dual U-Slot Triple Band Microstrip Patch Antenna for Next Generation Wireless Networks. In International Conference on Sensor Network Security Technology and Privacy Communication System (SNS & PCS) (1-6). https://doi.org/10.1109/ICET.2013.6743490 DOI: https://doi.org/10.1109/ICET.2013.6743490

Pathak, R. S., Singh, V. K., & Ayub, S. (2012). Dual Band Microstrip Antenna for GPS/ WLAN/ WiMAX Applications. International Journal of Emerging Technology and Advanced Engineering (IJETED), 7(2).

Singh, P., Chandel, A., & Naina, D. (2013). Bandwidth Enhancement of Probe Fed Microstrip Patch Antenna. International Journal of Electronics and Communication Technology (IJECCT), 3(1).

Sze, J. Y., & Wong, K. L. (2001). Bandwidth enhancement of a microstrip-line-fed printed wide slot antenna. IEEE Transactions on Antennas and Propagation, 49(7), 1020-1024. https://doi.org/10.1109/8.933480 DOI: https://doi.org/10.1109/8.933480

Thakare, V. V., & Singhal, P. (2009). Neural network based CAD model for the design of rectangular patch antennas. Journal of Engineering and Technology Research (JETR), 1(7), 129-132.

Yang, L. S., & Kishk, A. A. (2008). Dual- and Multiband U-Slot Patch Antennas. IEEE Antennas and Wireless Propagation Letters, 7, 645-647. https://doi.org/10.1109/LAWP.2008.2010342 DOI: https://doi.org/10.1109/LAWP.2008.2010342

Zhang, G., Lancaster, M. J., & Huang, F. (2006). A high-temperature superconducting bandpass filter with microstrip quarter-wavelength spiral resonators. IEEE Transactions on Microwave Theory and Techniques, 54, 559-563. https://doi.org/10.1109/TMTT.2005.862711 DOI: https://doi.org/10.1109/TMTT.2005.862711

Zhang, Q., Meng, Q., Sun, L., Huang, J., Wang, Y., Zhang, X., He, A., Li, H., He, Y., & Luo, S. (2006). A high-performance ultra-narrow bandpass HTS filter and its application in a wind-profiler radar system. Superconductor Science and Technology, 19, S398-S402. https://doi.org/10.1088/0953-2048/19/5/S49 DOI: https://doi.org/10.1088/0953-2048/19/5/S49

Downloads

Published

2024-04-16

How to Cite

Dubey, P. (2024). DESIGN AND SIMULATION OF DUAL BAND H SHAPED MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS. International Journal of Research -GRANTHAALAYAH, 12(3), 187–196. https://doi.org/10.29121/granthaalayah.v12.i3.2024.5933