COMPATIBILITY ANALYSIS OF THE SOIL CALCIUM CONTENT BY MULTIFREQUENCY EC SENSORS

Authors

  • János Horváth Ph.D. Student, Doctoral School of Mechanical Engineering, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, 2100 Gödöllő, Hungary
  • Dr. László Kátai Professor, Institute of Technology, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, H-2100 Gödöllő, Hungary
  • Dr. István Szabó Professor, Institute of Technology, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, H-2100 Gödöllő, Hungary

DOI:

https://doi.org/10.29121/granthaalayah.v11.i12.2023.5437

Keywords:

Electrical Conductivity, Selective Soil Salinity, Variable Frequency

Abstract [English]

Nowadays in precision agriculture, the on-the-go measurement of soil nutrients is an important research topic in the sustainable nutrient management practices. Determining the nutrient content of soils and the judicious and site-specific replacement of missing mineral compounds of soil has a major impact on production costs in terms of current fertilizer prices. Soil sensors currently on the market can only determine total soil salinity. Therefore, selective soil salinity testing is only possible using laboratory methods. However, these methods are rather expensive, slow, and cumbersome. Growers often need faster and cheaper soil sampling process and immediate results. We believe that by developing measurement models of soil sensors, the data delivery process could be significantly shortened, so that measurement results could be processed and used even in real time. In this paper, we prove that electrical conductivity measurements can be a suitable tool for the determination of the selective salinity of soil. In our experiments, the calcium cation content of soil was measured by conductometry in laboratory conditions. In our model, we investigated the effect of a reasonable and well-considered variation of the measuring current frequency on the measurement output variable, i.e. the electrical conductivity (often abbreviated as EC) value. Our experiments have shown that with multi-frequency, solutions containing predetermined concentrations of Ca2+ ions, the EC obtained as an output parameter follows different functions.

Downloads

Download data is not yet available.

References

Adamchuk, V. I., & Rossel, R. A. V. (2010). Development of On-the-Go Proximal Soil Sensor Systems. In R. A. Viscarra Rossel, A. B. McBratney, & B. Minasny (Eds.), Proximal Soil Sensing. Springer Netherlands, 15–28. https://doi.org/10.1007/978-90-481-8859-8_2. DOI: https://doi.org/10.1007/978-90-481-8859-8_2

Corwin, D. L., & Lesch, S. M. (2005). Apparent Soil Electrical Conductivity Measurements in Agriculture. Computers and Electronics in Agriculture, 46(1–3), 11–43. https://doi.org/10.1016/j.compag.2004.10.005. DOI: https://doi.org/10.1016/j.compag.2004.10.005

Craig, V. S. J., & Henry, C. L. (2009). Specific Ion Effects at the Air–Water Interface: Experimental Studies. In W. Kunz, Specific Ion Effects, 191–214. World Scientific. https://doi.org/10.1142/9789814271585_0007. DOI: https://doi.org/10.1142/9789814271585_0007

Dayo-Olagbende, G.O., & Ewulo, B.S. (2021). Ionic Mobility of Cations as Affected by Redox Status of Two Different Soil Textures. Bulgarian Journal of Soil Science, 6(1), 18–32. https://doi.org/10.5281/ZENODO.4887052.

Galbács, G., Galbács, Z., & Sipos, P. (2015). Instrumental Analytical Chemistry Exercises. JATEPress. (in Hungarian).

Ghosal, S., Hemminger, J. C., Bluhm, H., Mun, B. S., Hebenstreit, E. L. D., Ketteler, G., Ogletree, D. F., Requejo, F. G., & Salmeron, M. (2005). Electron Spectroscopy of Aqueous Solution Interfaces Reveals Surface Enhancement of Halides. Science, 307(5709), 563–566. https://doi.org/10.1126/science.1106525. DOI: https://doi.org/10.1126/science.1106525

Grunwald, S., Vasques, G., & Rivero, R. (2015). Fusion of Soil and Remote Sensing Data to Model Soil Properties. Advances in Agronomy, 131, 1–109. https://doi.org/10.1016/bs.agron.2014.12.004. DOI: https://doi.org/10.1016/bs.agron.2014.12.004

Hajdú, J. (2018). Quick Soil Testing and Soil Mapping. Agronapló, 22, 65–67. (in Hungarian).

Hossain, S. (2019). Present Scenario of Global Salt Affected Soils, its Management and Importance of Salinity Research. International Journal of Biological Sciences, 1(1), 1–3.

ICT - Agricultural Sensors Market. (2022, August 28).

Jungwirth, P., & Tobias, D. J. (2006). Specific Ion Effects at the Air/Water Interface. Chemical Reviews, 106(4), 1259–1281. https://doi.org/10.1021/cr0403741. DOI: https://doi.org/10.1021/cr0403741

Khan, S. I., Rahman, A., Islam, S., Nasir, M. K., Band, S. S., & Mosavi, A. (2021). IoT and Wireless Sensor Networking-Based Effluent Treatment Plant Monitoring System. Acta Polytechnica Hungarica, 18(10), 205–224. https://doi.org/10.12700/APH.18.10.2021.10.11. DOI: https://doi.org/10.12700/APH.18.10.2021.10.11

Kukadiya, H, and Meva, D. (2023). Machine Learning in Agriculture for Crop Diseases Identification: A Survey. International Journal of Research - GRANTHAALAYAH, 11(3), 87–100. https://doi.org/10.29121/granthaalayah.v11.i3.2023.5099. DOI: https://doi.org/10.29121/granthaalayah.v11.i3.2023.5099

Li, M., Wang, M., & Wang, Q. (2006). Development and Performance Test of a Portable Soil EC Detector. Applied Engineering in Agriculture, 22(2), 301–307. DOI: https://doi.org/10.13031/2013.20276

Lund, E. D. (2008). Soil Electrical Conductivity. In Soil Science Step-by-Step Field Analysis. John Wiley & Sons, Ltd 137–146. https://doi.org/10.2136/2008.soilsciencestepbystep.c11. DOI: https://doi.org/10.2136/2008.soilsciencestepbystep.c11

Luo, J., Ye, S., Li, T., Sarnello, E., Li, H., & Liu, T. (2019). Distinctive Trend of Metal Binding Affinity via Hydration Shell Breakage in Nanoconfined Cavity. The Journal of Physical Chemistry C, 123(23), 14825–14833. https://doi.org/10.1021/acs.jpcc.9b03004. DOI: https://doi.org/10.1021/acs.jpcc.9b03004

Mandal, M., Paramanik B., Sarkar A., and Mahata D. (2021). Precision Farming in Floriculture. International Journal of Research - GRANTHAALAYAH, 9(1), 75-77. https://doi.org/10.29121/granthaalayah.v9.i1.2021.2871. DOI: https://doi.org/10.29121/granthaalayah.v9.i1.2021.2871

Marcus, Y. (2010). Effect of Ions on the Structure of Water. Pure and Applied Chemistry, 82(10), 1889–1899. https://doi.org/10.1351/PAC-CON-09-07-02. DOI: https://doi.org/10.1351/PAC-CON-09-07-02

Massoud, F. I. (1981). Salt Affected Soils at a Global Scale and Concepts for Control, 21. Rome, FAO.

Mbosowo, E. M. & Ebinimitei C. S. (2018). The Effect of Soil Conditions on the Physiological Indices of Costus Afer ker gawl. International Journal of Research - Granthaalayah, 6(1), 362-367. https://doi.org/10.29121/granthaalayah.v6.i1.2018.1630. DOI: https://doi.org/10.29121/granthaalayah.v6.i1.2018.1630

Ohtaki, H., & Radnai, T. (1993). Structure and Dynamics of Hydrated Ions. Chemical Reviews, 93(3), 1157–1204. https://doi.org/10.1021/cr00019a014. DOI: https://doi.org/10.1021/cr00019a014

Patel, A. (2016). Addressing Soil Health Management Issues in india. International Journal of Research - Granthaalayah, 4(12), 110-123. https://doi.org/10.29121/granthaalayah.v4.i12.2016.2399. DOI: https://doi.org/10.29121/granthaalayah.v4.i12.2016.2399

Pei, X., Zheng, L., Zhao, Y., Zhang, M., & Li, M. (2012). Development and Performance Test for a New Type of Portable Soil EC Detector. AICT-392(Part I), 418. https://doi.org/10.1007/978-3-642-36124-1_50. DOI: https://doi.org/10.1007/978-3-642-36124-1_50

Popp, J., Erdei E., & Oláh J. (2018). The Prospects of Precision Agriculture in Hungary. International Journal of Engineering and Management Sciences, 3(1), Article 1. (in Hungarian). https://doi.org/10.21791/IJEMS.2018.1.15. DOI: https://doi.org/10.21791/IJEMS.2018.1.15.

Rengasamy, P. (1998). Processes Involved in Sodic Behaviour. In ‘Sodic Soils. Distribution, Properties, Management, and Environmental Consequences’. (Eds ME Sumner, R Naidu), 35–50.

Rengasamy, P. (2016). Soil Chemistry Factors Confounding Crop Salinity Tolerance—A Review. Agronomy, 6(4), 53. https://doi.org/10.3390/agronomy6040053. DOI: https://doi.org/10.3390/agronomy6040053

Seifi, M. R., Alimardani, R., & Sharifi, A. (2010). Design and Development of a Portable Soil Electrical Conductivity Detector. Asian Journal of Agricultural Sciences, 2(4), 168–173.

Sinfield, J. V., Fagerman, D., & Colic, O. (2010). Evaluation of Sensing Technologies for on-the-go Detection of Macro-Nutrients in Cultivated Soils. Computers and Electronics in Agriculture, 70(1), 1–18. https://doi.org/10.1016/j.compag.2009.09.017. DOI: https://doi.org/10.1016/j.compag.2009.09.017

Stefanovits, P., Filep, Gy., & Füleky, Gy. (2005). Soil science. Mezőgazda.

Trisal, A., & Mandloi, D. D. (2021). Machine Learning: An Overview. International Journal of Research - GRANTHAALAYAH, 9(7), 343-348. https://doi.org/10.29121/granthaalayah.v9.i7.2021.4120. DOI: https://doi.org/10.29121/granthaalayah.v9.i7.2021.4120

Trosin, M., Dekemati, I., & Szabó, I. (2021). Measuring Soil Surface Roughness with the RealSense D435i. Acta Polytechnica Hungarica, 18(6), 141–155. https://doi.org/10.12700/APH.18.6.2021.6.8. DOI: https://doi.org/10.12700/APH.18.6.2021.6.8

Viscarra Rossel, R. A., Adamchuk, V. I., Sudduth, K. A., McKenzie, N. J., & Lobsey, C. (2011). Chapter Five - Proximal Soil Sensing: An Effective Approach for Soil Measurements in Space and Time. In D. L. Sparks (Ed.), Advances in Agronomy, 113, 243–291. https://doi.org/10.1016/B978-0-12-386473-4.00005-1. DOI: https://doi.org/10.1016/B978-0-12-386473-4.00005-1

Waluyo, I., Huang, C., Nordlund, D., Bergmann, U., Weiss, T. M., Pettersson, L. G. M., & Nilsson, A. (2011). The Structure of Water in the Hydration Shell of Cations from X-Ray Raman and Small Angle X-Ray Scattering Measurements. The Journal of Chemical Physics, 134(6), 064513. https://doi.org/10.1063/1.3533958. DOI: https://doi.org/10.1063/1.3533958

Wicke, B., Smeets, E., Dornburg, V., Vashev, B., Gaiser, T., Turkenburg, W., & Faaij, A. (2011). The Global Technical and Economic Potential of Bioenergy From Salt-Affected Soils. Energy & Environmental Science, 4(8), 2669–2681. https://doi.org/10.1039/C1EE01029H. DOI: https://doi.org/10.1039/C1EE01029H

Downloads

Published

2024-01-13

How to Cite

Horváth, J., Kátai, L., & Szabó, I. (2024). COMPATIBILITY ANALYSIS OF THE SOIL CALCIUM CONTENT BY MULTIFREQUENCY EC SENSORS. International Journal of Research -GRANTHAALAYAH, 11(12), 175–187. https://doi.org/10.29121/granthaalayah.v11.i12.2023.5437