HYBRID GRID ENERGY MANAGEMENT USING RENEWABLE ENERGY SOURCES: A STRATEGIC SOLUTION FOR POLLUTION-FREE POWER SYSTEMS

Authors

  • Jay Dhruv Ph.D. Scholar, Electrical Department, Gokul Global University, Gujarat, India
  • Dr. Vikram Patel Associate Professor, Electrical Department, Gokul Global University, Gujarat, India

DOI:

https://doi.org/10.29121/shodhkosh.v5.i5.2024.6077

Keywords:

Hybrid, Energy, Renewable Energy, Power

Abstract [English]

The global demand for clean and reliable energy has accelerated the integration of renewable energy sources (RES) such as solar and wind into power grids. Hybrid AC/DC microgrids, leveraging distributed generation (DG) and energy storage systems (ESS), have emerged as a promising solution to mitigate power quality issues, reduce dependency on fossil fuels, and enhance operational flexibility. However, the unique characteristics of RES—such as intermittency and variability—pose significant challenges to energy management systems (EMS). This paper explores a multi-agent based hierarchical EMS framework to optimize power flow and ensure efficient integration of distributed energy resources. Simulation and case studies demonstrate the potential of hybrid microgrids to support a stable and resilient future energy infrastructure.

References

Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicuña, L. G., & Castilla, M. (2011). Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization. IEEE Transactions on Industrial Electronics, 58(1), 158-172.

Lasseter, R. H. (2011). Smart distribution: Coupled microgrids. Proceedings of the IEEE, 99(6), 1074-1082.

Dragicevic, T., Lu, X., Vasquez, J. C., & Guerrero, J. M. (2016). DC microgrids—Part II: A review of power architectures, applications, and standardization issues. IEEE Transactions on Power Electronics, 31(5), 3528-3549.

Soshinskaya, M., Crijns-Graus, W., Guerrero, J. M., & van den Broek, M. (2014). Microgrids: Experiences, barriers and success factors. Renewable and Sustainable Energy Reviews, 40, 659-672.

Shah, R., Mithulananthan, N., & Bansal, R. C. (2015). A review of key power system stability challenges for large-scale PV integration. Renewable and Sustainable Energy Reviews, 41, 1423-1436.

Colson, C. M., & Nehrir, M. H. (2013). Comprehensive real-time microgrid power management and control with distributed agents. IEEE Transactions on Smart Grid, 4(1), 617-627. DOI: https://doi.org/10.1109/TSG.2012.2236368

Wang, X., Guerrero, J. M., & Blaabjerg, F. (2017). Virtual inertia control technique for islanded microgrids. IEEE Transactions on Smart Grid, 8(2), 766-776.

Liu, X., Wang, P., & Loh, P. C. (2011). A hybrid AC/DC microgrid and its coordination control. IEEE Transactions on Smart Grid, 2(2), 278-286. DOI: https://doi.org/10.1109/TSG.2011.2116162

Mohamed, F. A., & Koivo, H. N. (2010). System modelling and online optimal management of microgrid using mesh adaptive direct search. International Journal of Electrical Power & Energy Systems, 32(5), 398-407. DOI: https://doi.org/10.1016/j.ijepes.2009.11.003

Lopes, J. A. P., Moreira, C. L., & Madureira, A. G. (2006). Defining control strategies for microgrids islanded operation. IEEE Transactions on Power Systems, 21(2), 916-924. DOI: https://doi.org/10.1109/TPWRS.2006.873018

Hossain, E., Kabalci, E., Bayindir, R., & Perez, R. (2019). A comprehensive study on microgrid technology. International Journal of Renewable Energy Research, 4(4), 1094-1102.

Mishra, S., Tripathi, R. K., & Mohanty, S. R. (2020). Energy management in microgrids using artificial intelligence: A review. International Journal of Energy Research, 44(10), 8615-8640.

Singh, S. N., & Verma, A. (2010). Distributed generation planning using differential evolution. Electric Power Components and Systems, 38(6), 617-634.

Rezaei, P., & Frolik, J. (2018). Demand response for residential buildings: A survey. Renewable and Sustainable Energy Reviews, 93, 395-408.

Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicuña, L. G., & Castilla, M. (2011). Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization. IEEE Transactions on Industrial Electronics, 58(1), 158-172. DOI: https://doi.org/10.1109/TIE.2010.2066534

Lasseter, R. H. (2011). Smart distribution: Coupled microgrids. Proceedings of the IEEE, 99(6), 1074-1082. DOI: https://doi.org/10.1109/JPROC.2011.2114630

Dragicevic, T., Lu, X., Vasquez, J. C., & Guerrero, J. M. (2016). DC microgrids—Part II: A review of power architectures, applications, and standardization issues. IEEE Transactions on Power Electronics, 31(5), 3528-3549. DOI: https://doi.org/10.1109/TPEL.2015.2464277

Soshinskaya, M., Crijns-Graus, W., Guerrero, J. M., & van den Broek, M. (2014). Microgrids: Experiences, barriers and success factors. Renewable and Sustainable Energy Reviews, 40, 659-672. DOI: https://doi.org/10.1016/j.rser.2014.07.198

Shah, R., Mithulananthan, N., & Bansal, R. C. (2015). A review of key power system stability challenges for large-scale PV integration. Renewable and Sustainable Energy Reviews, 41, 1423-1436. DOI: https://doi.org/10.1016/j.rser.2014.09.027

Downloads

Published

2024-05-31

How to Cite

Dhruv, J., & Patel, V. (2024). HYBRID GRID ENERGY MANAGEMENT USING RENEWABLE ENERGY SOURCES: A STRATEGIC SOLUTION FOR POLLUTION-FREE POWER SYSTEMS. ShodhKosh: Journal of Visual and Performing Arts, 5(5), 1667–1674. https://doi.org/10.29121/shodhkosh.v5.i5.2024.6077