CROSS-LINGUISTIC EVALUATION OF AI-GENERATED TEXT DETECTION: A COMPARATIVE STUDY ON ENGLISH AND INDONESIAN USING PRECISION, RECALL AND F1 SCORE

Authors

  • Yatheendra K V Research Scholar, College of Computer Science, Srinivas University, Mangalore, India
  • Dr. Sudhakara Arabagatte Professor, College of Computer Science, Srinivas University, Mangalore, India

DOI:

https://doi.org/10.29121/shodhkosh.v6.i1.2025.5423

Keywords:

Precision, Recall, F1 Score, Accuracy, Ai, Academic

Abstract [English]

In the age of generative AI, the line between human-written and machine-generated text is becoming increasingly blurred. This paper explores the performance of AI content detection systems across two linguistically and structurally diverse languages—English and Indonesian—through an empirical evaluation using 5,000 samples. The study evaluates detection outcomes using widely accepted performance metrics: precision, recall, and F1 score. Results reveal higher detection accuracy for English compared to Indonesian, due to linguistic complexities and dataset bias. This study underscores the growing importance of multilingual AI verification tools, especially in academic and regulatory environments.

References

Iqbal, H. R., Sharjeel, M., Shafi, J., & Mehmood, U. (2024). Urdu Sentential Paraphrased Plagiarism Detection Using Large Language Models. ACM TALLIP.

Abisheka, P., Deisy, C., & Sharmila, P. (2024). T-SRE: Transformer-Based Semantic Relation Extraction for Contextual Paraphrased Plagiarism Detection. Journal of King Saud University - Computer and Information Sciences. DOI: https://doi.org/10.1016/j.jksuci.2024.102257

Zhou, C., Qiu, C., Liang, L., & Acuna, D. E. (2025). Paraphrase Identification with Deep Learning: A Review of Datasets and Methods. IEEE Access. DOI: https://doi.org/10.1109/ACCESS.2025.3556899

DOI: 10.1109/ACCESS.2025.3367091

Manzoor, M. F., Farooq, M. S., & Abid, A. (2025). Stylometry-Driven Framework for Urdu Intrinsic Plagiarism Detection. Neural Computing and Applications.

DOI: 10.1007/s00521-024-10966-w DOI: https://doi.org/10.1007/s00521-024-10966-w

Vrbanec, T., & Meštrović, A. (2023). Comparison Study of Unsupervised Paraphrase Detection: Deep Learning – The Key for Semantic Similarity Detection. Expert Systems.

DOI: 10.1111/exsy.13386 DOI: https://doi.org/10.1111/exsy.13386

Sharjeel, M., Iqbal, H. R., & Shafi, J. (2025). Urdu Paraphrased Text Reuse and Plagiarism Detection Using Pre-trained LLMs and Deep Neural Networks. Multimedia Tools and Applications.

Pudasaini, S., Miralles-Pechuán, L., & Lillis, D. (2024). Survey on AI-Generated Plagiarism Detection: The Impact of Large Language Models on Academic Integrity. Journal of Academic Ethics.

DOI: 10.1007/s10805-024-09576-x DOI: https://doi.org/10.1007/s10805-024-09576-x

Sajid, M., Sanaullah, M., Fuzail, M., & Malik, T. S. (2025). Comparative Analysis of Text-Based Plagiarism Detection Techniques. PLOS ONE.

DOI: 10.1371/journal.pone.0319551 DOI: https://doi.org/10.1371/journal.pone.0319551

Amirzhanov, A., Turan, C., & Makhmutova, A. (2025). Plagiarism Types and Detection Methods: A Systematic Survey of Algorithms in Text Analysis. Frontiers in Computer Science.

DOI: 10.3389/fcomp.2025.1504725 DOI: https://doi.org/10.3389/fcomp.2025.1504725

Lee, J., Le, T., Chen, J., & Lee, D. (2023). Do Language Models Plagiarize? Proceedings of the ACM Web Conference (WWW).

DOI: 10.1145/3543507.3583199 DOI: https://doi.org/10.1145/3543507.3583199

Downloads

Published

2025-04-12

How to Cite

Yatheendra K V, & Arabagatte, S. (2025). CROSS-LINGUISTIC EVALUATION OF AI-GENERATED TEXT DETECTION: A COMPARATIVE STUDY ON ENGLISH AND INDONESIAN USING PRECISION, RECALL AND F1 SCORE. ShodhKosh: Journal of Visual and Performing Arts, 6(1), 70–75. https://doi.org/10.29121/shodhkosh.v6.i1.2025.5423