PHOTOCATALYTIC REMOVAL OF TOXIC TEXTILE DYES FROM WATER USING CU-DOPED ZNO NANOPARTICLES UNDER NATURAL SUNLIGHT

Authors

  • D. Sonia Research Scholar (Reg no: 20123112032018), Department of Chemistry & Research Centre, Nesamony Memorial Christian College, Marthandam-629165(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), Tamilnadu, India.
  • E.K. Kirupa Vasam Assistant Professor, Department of Chemistry & Research Centre, Nesamony Memorial Christian College, Marthandam-629165(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), Tamilnadu, India.

DOI:

https://doi.org/10.29121/shodhkosh.v5.i4.2024.4441

Keywords:

Cu-doped ZnO, Photocatalyst, Nanoparticle, Direct Red 81, Photocatalytic Removal, Sunlight

Abstract [English]

An efficient copper-doped ZnO (Cu-doped ZnO) nanoparticle was synthesized in nano form via co-precipitation using zinc sulfate heptahydrate as a precursor. The synthesized Cu-doped ZnO nanoparticle was characterized using X-ray diffraction (XRD), FT-IR, UV-DRS, SEM with EDX, and HRTEM techniques. The bandgap energy of the Cu-doped ZnO nanoparticle was reduced, enhancing visible-light absorption. The addition of copper ions modified the electronic and optical properties of the photocatalyst, thereby improving its photocatalytic performance. The photocatalytic activity of Cu-doped ZnO nanoparticles was evaluated for the degradation of Direct Red 81 dye (DR-81) as a pollutant in an aqueous solution. Under optimal conditions (DR-81 dye concentration of 20 ppm, Cu-doped ZnO dosage of 0.4 g/100 mL, and 60 minutes of sunlight irradiation), a maximum DR-81 removal efficiency of approximately 70.83% was achieved. A plausible photocatalytic degradation mechanism of DR-81 using Cu-doped ZnO was proposed, revealing that •O₂⁻ and •OH radicals were the primary active species responsible for its degradation. Cyclic experiments demonstrated the high stability and reusability of Cu-doped ZnO, confirming its potential as an economical and environmentally friendly photocatalyst.

References

Chebor LJ (2018) Characterization of synthesized ZnO nanoparticles and their application in photodegradation of methyl orange dye under fluorescent lamp irradiation. Int J Sci Eng Sci2:5–8.

Hossain A, Sadique RABM, Raihan MJ, Nargis A, Ismail IMI, Habib A, Mahmood AJ (2016) Kinetics of degradation of eosin y by one of the advanced oxidation processes (AOPs)-Fenton’s process. Am J Anal Chem 7:863–879. DOI: https://doi.org/10.4236/ajac.2016.712074

Golob, Vera, Aleksandra Vinder, and Marjana Simonič (2005) Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes and pigments 67, 2: 93-97. DOI: https://doi.org/10.1016/j.dyepig.2004.11.003

Mahmoodi, Niyaz Mohammad, Raziyeh Salehi, Mokhtar Arami, and Hajir Bahrami (2011) Dye removal from colored textile wastewater using chitosan in binary systems. Desalination 267: 64-72. DOI: https://doi.org/10.1016/j.desal.2010.09.007

Zandsalimi Y, Taimori P, Soltani RDC, Rezaee R, Abdullahi N, Safari M (2015) Photocatalytic removal of acid red 88 dye using zinc oxide nanoparticles fixed on glass plates. J Adv Environ Health Res. 3:102–10.

Shirmardi M, Mahvi AH, Mesdaghinia A, Nasseri S, Nabizadeh R. (2013) Adsorption of acid red-18 dye from aqueous solution using single wall carbon nanotubes: kinetic and equilibrium. Desalin Water Treat. 51: 6507–16. DOI: https://doi.org/10.1080/19443994.2013.793915

Nadafi K, Vosoughi M, Asadi A, Borna MO, Shirmardi M. (2014) Reactive Red 120 dye removal from aqueous solution by adsorption on nano-alumina. JWater Chem Technol. 36(3):125–33. DOI: https://doi.org/10.3103/S1063455X14030059

Sivakumar B, S. Karthikeyan , C. Kannan. (2010) Film and pore diffusion modeling fortheadsorption of Direct Red 81 on activated carbon prepared from Balsamodendron Caudatum wood waste. Dig J Nanomater Bios. 5:657-665.

Heravi MM, Zari Abasion, Ali Morsali1, Pouran Ardalan and Touran Ardalan. (2015) Biosorption of Direct Red 81 dye from aqueous solution on prepared Sonchus fruit plant, as a low cost biosorbent: thermodynamic and kinetic study. J Appl Chem, 9:17-22.

Chollom MN, Rathila S, Pillay V L, Dorcas Alfa. (2015) The applicability of nanofiltration for the treatment and reuse of textile reactive dye effluent. Water SA, 41: 398-405. DOI: https://doi.org/10.4314/wsa.v41i3.12

Ajmal A, Majeed I, Malik R, Iqbal M, Nadeem MA, Hussain I. (2016) Photocatalytic degradation of textile dyes on Cu2O-CuO/TiO2 anatase powders. J Environ Chem Eng. 4:2138–46. DOI: https://doi.org/10.1016/j.jece.2016.03.041

Ghaneian MT, Morovati P, Ehrampoush MH, Tabatabaee M. (2014) Humic acid degradation by the synthesized flower-like Ag/ZnO nanostructure as an efficient photocatalyst. J Environ Health Sci Eng.12:138-146. DOI: https://doi.org/10.1186/s40201-014-0138-y

Zhou K, Hu X-Y, Chen B-Y, Hsueh C-C, Zhang Q, Wang J. (2016) Synthesized TiO2/ZSM-5 composites used for the photocatalytic degradation of azo dye: intermediates, reaction pathway, mechanism and bio-toxicity. Appl Surf Sci. 383:300–9. DOI: https://doi.org/10.1016/j.apsusc.2016.04.155

Mittal M, Sharma M, Pandey O P. (2014) UV–visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by coprecipitation method. Sol Energy. 110:386–97. DOI: https://doi.org/10.1016/j.solener.2014.09.026

Karimi L, Zohoori S, Yazdanshenas M E. (2014) Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst. J Saudi Chem Soc. 18:581–8. DOI: https://doi.org/10.1016/j.jscs.2011.11.010

Hadi M, McKay G, Samarghandi MR, Maleki A, Solaimany Aminabad M. (2012) Prediction of optimum adsorption isotherm: comparison of chi-square and log-likelihood statistics. DesalinWater Treat. 49:81–94. DOI: https://doi.org/10.1080/19443994.2012.708202

Sun L, Yao Y, Wang L, Mao Y, Huang Z, Yao D, Lu W, Chen W. (2014) Efficient removal of dyes using activated carbon fibers coupled with 8-hydroxyquinoline ferric as a reusable Fenton-like catalyst. Chem Eng J 240:413–419 DOI: https://doi.org/10.1016/j.cej.2013.12.009

Haydar MS (2015) Photodegradation of Alizarin Black S dye using zinc oxide. J Environ Sci Eng 4:395–400 DOI: https://doi.org/10.17265/2162-5298/2015.08.002

Samadi M, Zirak M, Naseri A, Khorashadizade E, Moshfegh AZ. (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films. 605:2–19. DOI: https://doi.org/10.1016/j.tsf.2015.12.064

Xu C, Cao L, Su G, LiuW, Qu X, Yu Y. (2010) Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. J Alloys Compd. 497:373–6. DOI: https://doi.org/10.1016/j.jallcom.2010.03.076

Subash B, Krishnakumar B, SwaminathanM, Shanthi M. (2013) Synthesis and characterization of cerium–silver co-doped zinc oxide as a novel sunlight-driven photocatalyst for effective degradation of reactive Red 120 dye. Mater Sci Semicond Process. 16:1070–8. DOI: https://doi.org/10.1016/j.mssp.2013.04.001

Soltani RDC, Jorfi S, Ramezani H, Purfadakari S. (2016) Ultrasonically induced ZnO–biosilica nanocomposite for degradation of a textile dye in aqueous phase. Ultrason Sonochem. 28:69–78. DOI: https://doi.org/10.1016/j.ultsonch.2015.07.002

Mekasuwandumrong O, Pawinrat P, Praserthdam P, Panpranot J. (2010) Effects of synthesis conditions and annealing post-treatment on the photocatalytic activities of ZnO nanoparticles in the degradation of methylene blue dye. Chem Eng J. 164:77–84. DOI: https://doi.org/10.1016/j.cej.2010.08.027

Maleki A, Shahmoradi B. (2012) Solar degradation of Direct Blue 71 using surface modified iron doped ZnO hybrid nanomaterials. Water Sci Technol. 65:1923–8. DOI: https://doi.org/10.2166/wst.2012.091

Kalpesh Anil Isai, Vinod Shankar Shrivastava. (2019) Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study, SN Applied Sciences 1:1247-11. DOI: https://doi.org/10.1007/s42452-019-1279-5

Chang CJ, Lin CY, Hsu MH. (2014) Enhanced photocatalytic activity of Ce-doped ZnO nanorods under UVand visible light. J Taiwan Inst Chem Eng. 45:1954–63 DOI: https://doi.org/10.1016/j.jtice.2014.03.008

Sankara Reddy B, Venkatramana Reddy S, Koteeswara Reddy N, Pramoda K J. (2013) Synthesis, Structural, Optical Properties and Antibacterial activity of codoped (Ag, Co) ZnO Nanoparticles. Res. J. Material Sci. 1:11-20.

Fabbiyola S, John Kennedy L,Udaya Aruldoss, Bououdina M, Dakhel A A & Judith Vijaya. (2015) Synthesis of Co-doped ZnO nanoparticles via co-precipitation: Structural, optical and magnetic properties, J Powder Technology. 286:757-765. DOI: https://doi.org/10.1016/j.powtec.2015.08.054

Thutiyaporn Thiwawong, Korakot Onlaor, Natpasit Chaithanatkun, and Benchapol Tunhoo, (2018) Preparation of Copper Doped Zinc Oxide Nanoparticles by Precipitation Process for Humidity Sensing Device, International Conference on Science and Technology of Emerging Materials, 020022-1– 020022-5. DOI: https://doi.org/10.1063/1.5053198

Singh N, Mehra RM, Kapoor A (2011) Synthesis and characterization of ZnO nanoparticles. J Nano Electron Phys 3:132–139

Pourrahimi AM, Liu D, Pallon LKH, Andersson RL, Martinez AA, Lagaron JM, Hedenqvist MS, Ström V, Gedde UW, Olsson RT (2014) Water-based synthesis and cleaning methods for high purity ZnO nanoparticles—comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Adv 4:35568–35577 DOI: https://doi.org/10.1039/C4RA06651K

Shokri A, Rabiee F, Mahanpoor K (2017) Employing a novel nanocatalyst (Mn/Iranian hematite) for oxidation of SO2 pollutant in aqueous environment. Int J Environ Sci Technol 14:2485–2494. DOI: https://doi.org/10.1007/s13762-017-1346-7

K. Bhuvaneswari, G. Palanisamy, K. Sivashanmugan, T. Pazhanivel, T. Maiyalagan, (2021) ZnO nanoparticles decorated multiwall carbon nanotube assisted ZnMgAl layered triple hydroxide hybrid photocatalyst for visible light-driven organic pollutants removal, J. Environ. Chem. Eng. 9:104909-12. DOI: https://doi.org/10.1016/j.jece.2020.104909

L.P.P. Ha, T.H.T. Vinh, N.T.B. Thuy, C.M. Thi, Viet P. Van, (2021) Visible-light-driven photocatalysis of anisotropic silver nanoparticles decorated on ZnO nanorods: synthesis and characterizations, J. Environ. Chem. Eng. 9:105103-13. DOI: https://doi.org/10.1016/j.jece.2021.105103

Ghomri R, Nasiruzzaman S, Ahmed, Song W, Cai W, Bououdina, Ghers M. (2018) Pure and (Er, Al) co-doped ZnO nanoparticles: synthesis, characterization, magnetic and photocatalytic properties. Materials in Electronics. 29:10677-7 DOI: https://doi.org/10.1007/s10854-018-9136-7

Y. Jin, Q. Cui, K. Wang, J. Hao, Q. Wang, J. Zhang. (2011) Investigation of photoluminescence in undoped and Ag-doped ZnO flowerlike nanocrystal. J. Appl. Phys. 109:053521-10. DOI: https://doi.org/10.1063/1.3549826

Rajender Singh, P. B. Barman, Dheeraj Sharma, Synthesis. (2017) structural and optical properties of Ag doped ZnO nanoparticles with enhanced photocatalytic properties by photo degradation of organic dyes, J Mater Sci: Mater Electron 28:5705–5717 DOI: https://doi.org/10.1007/s10854-016-6242-2

Ferhat M, Zaoui A, Ahuja R. (2009) Magnetism and band gap narrowing in Cu-doped ZnO. Appl Phys Lett 94:142502-8. DOI: https://doi.org/10.1063/1.3112603

Muhammad Sajjada, Inam Ullaha, M.I. Khanb, Jamshid Khanc, M. Yaqoob Khana, Muhammad Tauseef Qureshi. (2018) Structural and optical properties of pure and copper doped zinc oxide nanoparticles, Results in Physics, 9:1301-1309, DOI: https://doi.org/10.1016/j.rinp.2018.04.010

Sharma, P., (2021). Defect engineering in ZnO nanoparticles through metal doping. ACS Applied Materials & Interfaces, 13:1–19

Pant, B.; Ojha, G.P.; Kuk, Y.S.; Kwon, O.H.; Wan Park, Y.; Park, M. (2020) Synthesis and characterization of ZnO-TiO2/carbon fiber composite with enhanced photocatalytic properties. Nanomaterials. 10:1960-11. DOI: https://doi.org/10.3390/nano10101960

Delsouz Khaki, M.R.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W.M.A.W. (2018) Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. J. Mol. Liq, 258:354–365. DOI: https://doi.org/10.1016/j.molliq.2017.11.030

Mulpuri, R.K.; Tirukkovalluri, S.R.; Imandi, M.R.; Alim, S.A.; Lakshmi Kapuganti, V.D. (2019) Zinc and boron co-doped nanotitania with enhanced photocatalytic degradation of acid red 6A under visible light irradiation. Sustain. Environ. Res, 1:29-36. DOI: https://doi.org/10.1186/s42834-019-0031-6

Li, W.; Wu, D.; Yu, Y.; Zhang, P.; Yuan, J.; Cao, Y.; Cao, Y.; Xu, J. (2014) Investigation on a novel ZnO/TiO2-B photocatalyst with enhanced visible photocatalytic activity. Phys. E Low-Dimens. Syst. Nanostruct. 58:118–123. DOI: https://doi.org/10.1016/j.physe.2013.12.004

Panwar, S.; Upadhyay, G.K.; Purohit, L.P. (2022) Gd-doped ZnO:TiO2 heterogenous nanocomposites for advance oxidation process. Mater. Res. Bull. 145:111534-46. DOI: https://doi.org/10.1016/j.materresbull.2021.111534

Mousa, H.M.; Alenezi, J.F.; Mohamed, I.M.A.; Yasin, A.S.; Hashem, A.F.M.; Abdal-hay, A. (2021) Synthesis of TiO2@ZnO heterojunction for dye photodegradation and wastewater treatment. J. Alloys Compd. 886:161169-11. DOI: https://doi.org/10.1016/j.jallcom.2021.161169

Tian, J.; Shao, Q.; Zhao, J.; Pan, D.; Dong, M.; Jia, C.; Ding, T.; Wu, T.; Guo, Z. (2019) Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B. J. Colloid Interface Sci. 541:18–29. DOI: https://doi.org/10.1016/j.jcis.2019.01.069

Hou, X.; Stanley, S.L.; Zhao, M.; Zhang, J.; Zhou, H.; Cai, Y.; Huang, F.; Wei, Q. (2019) MOF-based C-doped coupled TiO2/ZnO nanofibrous membrane with crossed network connection for enhanced photocatalytic activity. J. Alloys Compd. 777:982–990. DOI: https://doi.org/10.1016/j.jallcom.2018.10.174

Ahmed, A.Z.; Islam, M.M.; Islam, M.M.u.; Masum, S.M.; Islam, R.; Molla, M.A.I. (2020) Fabrication and characterization of B/Sn-doped ZnO nanoparticles via mechanochemical method for photocatalytic degradation of rhodamine B. Inorg. Nano-Metal Chem. 51:1369–1378. DOI: https://doi.org/10.1080/24701556.2020.1835976

Molla, M.A.I.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Kaneco, S. (2019) Fabrication of Ag-doped ZnO by mechanochemical combustion method and their application into photocatalytic Famotidine degradation. J. Environ. Sci. Heal. Part A Toxic Hazard. Subst. Environ. Eng. 54: 914–923. DOI: https://doi.org/10.1080/10934529.2019.1608793

Mondol, B.; Sarker, A.; Shareque, A.M.; Dey, S.C.; Islam, M.T.; Das, A.K.; Shamsuddin, S.M.; Molla, M.A.I.; Sarker, M. (2021) Preparation of Activated Carbon/TiO2 Nanohybrids for Photodegradation of Reactive Red-35 Dye Using Sunlight. Photochem. 1:54–66 DOI: https://doi.org/10.3390/photochem1010006

Downloads

Published

2024-04-30

How to Cite

D., S., & Vasam, E. K. (2024). PHOTOCATALYTIC REMOVAL OF TOXIC TEXTILE DYES FROM WATER USING CU-DOPED ZNO NANOPARTICLES UNDER NATURAL SUNLIGHT. ShodhKosh: Journal of Visual and Performing Arts, 5(4), 1506–1517. https://doi.org/10.29121/shodhkosh.v5.i4.2024.4441