EFFECTS OF THE SEAWEED EXTRACT OF GRACILARIA EDULIS ON THE GROWTH OF ZEA MAYS L. IN A GREENHOUSE
DOI:
https://doi.org/10.29121/shodhkosh.v4.i2.2023.3840Keywords:
Seaweeds, Water Extract, Biostimulant, Plant GrowthAbstract [English]
The application of marine macroalgae-based biostimulants has gained increased momentum in terms of plant growth and crop production. Seaweed has biostimulatory activities that result in improved plant growth and crop growth in various important commercial crops. They contribute to resistance to various abiotic and biotic stresses. In the present study, Gracilaria edulis was collected from the west coast of India. The compositions of fibre, protein, carbohydrate, moisture, ash, vitamins and other minerals were determined. The biostimulant properties of the seaweed extract were tested on Zea mays L. in a greenhouse. Z. mays L. seedlings were treated with seaweed extracts (0.5%, 1%), 1.5%, or 2.0%). The seaweed extract improved the elemental composition and chlorophyll content of the leaves. These findings revealed that seaweed extracts are suitable for environmentally friendly crop management.
References
Ahmed, D.A.E.A.; Gheda, S.F.; Ismail, G.A. Efficacy of two seaweeds dry mass in bioremediation of heavy metal polluted soil and growth of radish (Raphanus sativus L.) plant. Environ. Sci. Pollut. Res. 2021, 28, 12831–12846. DOI: https://doi.org/10.1007/s11356-020-11289-8
Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop Production. Plants 2021, 10, 531. DOI: https://doi.org/10.3390/plants10030531
Ali, O.; Ramsubhag, A.; Jayaraman, J. Phytoelicitor Activity of Sargassum vulgare and Acanthophora spicifera Extracts and Their Prospects for Use in Vegetable Crops for Sustainable Crop Production. J. Appl. Phycol. 2020. DOI: https://doi.org/10.1007/s10811-020-02309-8
Arias, A., Feijoo, G. and Moreira, M.T., 2024. Macroalgae as a sustainable biostimulant for crop production according to techno-economic and environmental criteria. Sustainable Production and Consumption. DOI: https://doi.org/10.1016/j.spc.2024.05.019
Association of Official Analytical Chemists (AOAC) (1990) Association of Official Analytical Chemists (AOAC) Official methods of analysis of Association of Official Analytical Chemists. 15th Edition. Arlington, VA, USA: AOAC; 1990. pp. 1–50.
Carillo, P., Ciarmiello, L.F., Woodrow, P., Corrado, G., Chiaiese, P. and Rouphael, Y., 2020. Enhancing sustainability by improving plant salt tolerance through macroand microalgal biostimulants. Biology, 9(9), p.253. DOI: https://doi.org/10.3390/biology9090253
Chanthini, K.M.P., Senthil-Nathan, S., Pavithra, G.S., Asahel, A.S., Malarvizhi, P., Murugan, P., Deva-Andrews, A., Sivanesh, H., Stanley-Raja, V., Ramasubramanian, R. and Ghaith, A., 2022. The macroalgal biostimulant improves the functional quality of tomato fruits produced from plants grown under salt stress. Agriculture, 13(1), p.6. DOI: https://doi.org/10.3390/agriculture13010006
Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393 DOI: https://doi.org/10.1007/s10811-010-9560-4
Crouch, I.J.; Beckett, R.P.; van Staden, J. Effect of Seaweed Concentrate on the Growth and Mineral Nutrition of Nutrient-Stressed Lettuce. J. Appl. Phycol. 1990. DOI: https://doi.org/10.1007/BF02179784
Crouch, I.J.; van Staden, J. Evidence for the Presence of Plant Growth Regulators in Commercial Seaweed Products. Plant Growth Regul. 1993, 6, 345–388. DOI: https://doi.org/10.1007/BF00207588
Di Stasio, E.; Rouphael, Y.; Colla, G.; Raimondi, G.; Giordano, M.; Pannico, A.; El-Nakhel, C.; De Pascale, S. The Influence of Ecklonia maxima Seaweed Extract on Growth, Photosynthetic Activity and Mineral Composition of Brassica rapa L. ssp. sylvestris under Nutrient Stress Conditions. Eur. J. Hortic. Sci. 2017.
Ertani, A.; Francioso, O.; Tinti, A.; Schiavon, M.; Pizzeghello, D.; Nardi, S. Evaluation of Seaweed Extracts from Laminaria and Ascophyllum nodosum Spp. As Biostimulants in Zea mays L. Using a Combination of Chemical, Biochemical and Morphological Approaches. Front. Plant Sci. 2018. DOI: https://doi.org/10.3389/fpls.2018.00428
Fei, H.; Crouse, M.; Papadopoulos, Y.; Vessey, J.K. Enhancing the Productivity of Hybrid Poplar (Populus × Hybrid) and Switchgrass (Panicum virgatum L.) by the Application of Beneficial Soil Microbes and a Seaweed Extract. Biomass Bioenergy 2017. DOI: https://doi.org/10.1016/j.biombioe.2017.09.022
Kergosien, N., Stiger-Pouvreau, V., Connan, S., Hennequart, F. and Brébion, J., 2023. Mini-Review: brown macroalgae as a promising raw material to produce biostimulants for the agriculture sector. Frontiers in Agronomy, 5, p.1109989. DOI: https://doi.org/10.3389/fagro.2023.1109989
Kholssi, R., Lougraimzi, H., Grina, F., Lorentz, J.F., Silva, I., Castaño-Sánchez, O. and Marks, E.A., 2022. Green agriculture: a review of the application of microand macroalgae and their impact on crop production on soil quality. Journal of Soil Science and Plant Nutrition, 22(4), pp.4627-4641. DOI: https://doi.org/10.1007/s42729-022-00944-3
Lakshmi, P.K. and Meenakshi, S., 2022. Micro and macroalgae: A potential biostimulant for abiotic stress management and crop production. In New and future developments in microbial biotechnology and bioengineering (pp. 63-82). Elsevier. DOI: https://doi.org/10.1016/B978-0-323-85163-3.00001-6
Mehlenbacher (1960) Mehlenbacher VC. The analysis of fats and oil. 1960. The Garad Press Publishing Champaign, Illinosis. ASIN: B00JCVATE0.
Melo, P., Abreu, C., Bahcevandziev, K., Araujo, G. and Pereira, L., 2020. Biostimulant effect of marine macroalgae bioextract on pepper grown in greenhouse. Applied Sciences, 10(11), p.4052. DOI: https://doi.org/10.3390/app10114052
Michalak, I., Chojnacka, K., Dmytryk, A., Wilk, R., Gramza, M. and Rój, E., 2016. Evaluation of supercritical extracts of algae as biostimulants of plant growth in field trials. Frontiers in plant science, 7, p.1591. DOI: https://doi.org/10.3389/fpls.2016.01591
Nelson, W.; Staden, J. The effect of seaweed concentrate on growth of nutrient-stressed greenhouse cucumbers. HortScience 1984, 19, 81–82. DOI: https://doi.org/10.21273/HORTSCI.19.1.81
Rathore, S.S.; Chaudhary, D.R.; Boricha, G.N.; Ghosh, A.; Bhatt, B.P.; Zodape, S.T.; Patolia, J.S. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S. Afr. J. Bot. 2009, 75, 351–355. DOI: https://doi.org/10.1016/j.sajb.2008.10.009
Sabir, A.; Yazar, K.; Sabir, F.; Kara, Z.; Yazici, M.A.; Goksu, N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci. Hortic. 2014, 175, 1–8. DOI: https://doi.org/10.1016/j.scienta.2014.05.021
Sangha, J.S., Kelloway, S., Critchley, A.T. and Prithiviraj, B., 2014. Seaweeds (macroalgae) and their extracts as contributors of plant productivity and quality: the current status of our understanding. Advances in botanical research, 71, pp.189-219. DOI: https://doi.org/10.1016/B978-0-12-408062-1.00007-X
Sarker, Azam & Talukder (2022) Sarker U, Azam MG, Talukder MZA. Genetic variation in mineral profiles, yield contributing agronomic traits, and foliage yield of stem amaranth. Genetika. 2022;54(1):91–108. doi: 10.2298/GENSR2201091S. DOI: https://doi.org/10.2298/GENSR2201091S
Sekhouna, D.; Kies, F.; Elegbede, I.O.; Matemilola, S.; Zorriehzahra, J.; Hussein, E.K. Potential assay of two green algae Ulva lactuca and Ulva intestinalisas biofertilizers. Sustain. Agri Food Environ. Res. 2021, 9, 567–580. DOI: https://doi.org/10.7770/safer-V0N0-art2259
Senthuran, S.; Balasooriya, B.L.W.K.; Arasakesary, S.J.; Gnanavelrajah, N. Effect of Seaweed Extract Kappaphycus alvarezii on the Growth, Yield and Nutrient Uptake of Leafy Vegetable Amaranthus Polygamous. Trop. Agric. Res. 2019. DOI: https://doi.org/10.4038/tar.v30i3.8321
Sharma, H.S., Fleming, C., Selby, C., Rao, J.R. and Martin, T., 2014. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of applied phycology, 26, pp.465-490. DOI: https://doi.org/10.1007/s10811-013-0101-9
Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Andreotti, C. Use of Biostimulants for Organic Apple Production: Effects on Tree Growth, Yield, and Fruit Quality at Harvest and During Storage. Front. Plant Sci. 2018, 9, 1342. DOI: https://doi.org/10.3389/fpls.2018.01342
Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J. Hortic. Sci. Biotechnol. 2009, 84, 131–137. DOI: https://doi.org/10.1080/14620316.2009.11512610
Tarafder et al. (2023) Tarafder S, Biswas M, Sarker U, Ercisli S, Okcu Z, Marc RA, Golokhvast KS. Influences of foliar spray and postharvest treatments on the head yield, shelf life, and physicochemical qualities of broccoli. Frontiers in Nutrition. 2023;10:1057084. doi: 10.3389/fnut.2023.1057084 DOI: https://doi.org/10.3389/fnut.2023.1057084
Turan, M.; Köse, C. Seaweed extracts improve copper uptake of grapevine. Acta Agric. Scand. Sect. B Soil Plant Sci. 2004, 54, 213–220. DOI: https://doi.org/10.1080/09064710410030311
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reena Mol. Sa

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.























