CONCENTRATION OF NANO FLUID/BASE FLUID SUSPENSION ENHANCE SURFACE CHARGE WITH PH STABILITY FOR LOW TO MEDIUM TEMPERATURE PHASE CHANGE MATERIALS

Authors

  • Bhushan Y. Patil Research Scholar, Mechanical Engineering, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, (Maharashtra), India
  • Dr. Nilesh P. Salunke Professor, Mechanical Engineering, Shri Vile Parle Kelavani Mandal's Institute of Technology, Mumbai Agra Highway, Dhule, (Maharashtra), India
  • Dr. Vijay R. Diware Associate Professor, Chemical Engineering, SSBTs College of Engineering & Technology, Post Box No. 94, Jalgaon, (Maharashtra), India
  • Vijay K. Suryavanshi Assistant Professor, Applied Science Department, SES’s R. C. Patel Institute of Technology, Shirpur, (Maharashtra), India
  • Pandit S. Patil Assistant Professor, Mechanical Department, SES’s R. C. Patel Institute of Technology, Shirpur, (Maharashtra), India

DOI:

https://doi.org/10.29121/shodhkosh.v5.i4.2024.2258

Keywords:

Zeta Potential, Poly-Dispersivity, PCMs- Phase Change Materials, Sars Solar Absorption Refrigeration System

Abstract [English]

Zeta potential and poly-dispersivity are used to characterize the samples that is obtained using absorption refrigeration system for low to medium temperature phase transition materials. Salicyclic acid, Benzanilide, Hydroquinone, Potassium thiocyanates, D-mannitol, Alunimium oxide, Iron oxide, and ZnO active concentration with base fluid, aspects including the influence of the PCMs property based on their phase transition mutual interaction are explored. In order to comprehend their behavior and improve their performance, functional materials synthesis and characterization depend heavily on the isoelectric point. Understanding the material surface charge role of the medium's pH stability to the many liquid-phase procedures involved in the synthesis of materials, since it conduct the processes like agglomeration, coagulation, peptization to form solid particles materials. Zeta potential measure, which commonly use concentration of volume fraction methods, electrophoretic migration techniques, are hence a valuable source of data.

References

Liu, Xuan, Päivi Mäki-Arvela, Atte Aho, Zuzana Vajglova, Vladimir M. Gun’ko, Ivo Heinmaa, Narendra Kumar, Kari Eränen, Tapio Salmi, and Dmitry Yu Murzin. "Zeta potential of beta zeolites: Influence of structure, acidity, pH, temperature and concentration." Molecules 23, no. 4 (2018): 946. DOI: https://doi.org/10.3390/molecules23040946

Miller, Jeffrey T., Marc Schreier, A. Jeremy Kropf, and John R. Regalbuto. "A fundamental study of platinum tetraammine impregnation of silica: 2. The effect of method of preparation, loading, and calcination temperature on (reduced) particle size." Journal of Catalysis 225, no. 1 (2004): 203-212. DOI: https://doi.org/10.1016/j.jcat.2004.04.007

Mech, Agnieszka, Stefania Gottardo, Valeria Amenta, Alessia Amodio, Susanne Belz, Søren Bøwadt, Jana Drbohlavová et al. "Safe-and sustainable-by-design: The case of Smart Nanomaterials. A perspective based on a European workshop." Regulatory Toxicology and Pharmacology 128 (2022): 105093. DOI: https://doi.org/10.1016/j.yrtph.2021.105093

Mäki-Arvela, Päivi, and Dmitry Yu Murzin. "Effect of catalyst synthesis parameters on the metal particle size." Applied Catalysis A: General 451 (2013): 251-281. DOI: https://doi.org/10.1016/j.apcata.2012.10.012

Cano-Sarmiento, C. T. D. I., D. I. Téllez-Medina, R. Viveros-Contreras, M. Cornejo-Mazón, C. Y. Figueroa-Hernández, E. García-Armenta, L. Alamilla-Beltrán, H. S. García, and G. F. Gutiérrez-López. "Zeta potential of food matrices." Food Engineering Reviews 10 (2018): 113-138. DOI: https://doi.org/10.1007/s12393-018-9176-z

Dukhin, Andrei S., and Renliang Xu. "Zeta-potential measurements." In Characterization of Nanoparticles, pp. 213-224. Elsevier, 2020. DOI: https://doi.org/10.1016/B978-0-12-814182-3.00014-6

Ottewill, R. H., and R. L. Rowell. "Colloid science." In Specialist Periodical Reports, Vol. 1. London: The Chemical Society, 1973.

Dukhin, A. S., and S. Parlia. "Measuring zeta potential of protein nano-particles using electroacoustics." Colloids and Surfaces B: Biointerfaces 121 (2014): 257-263. DOI: https://doi.org/10.1016/j.colsurfb.2014.02.048

Leong, Yee-Kwong, Jeremy Teo, EJen Teh, Joel Smith, Janette Widjaja, Jun-Xian Lee, Andries Fourie, Martin Fahey, and Rong Chen. "Controlling attractive interparticle forces via small anionic and cationic additives in kaolin clay slurries." Chemical Engineering Research and Design 90, no. 5 (2012): 658-666. DOI: https://doi.org/10.1016/j.cherd.2011.09.002

Delgado, Angel V., Fernando González-Caballero, R. J. Hunter, Luuk K. Koopal, and J. Lyklema. "Measurement and interpretation of electrokinetic phenomena (IUPAC technical report)." Pure and Applied Chemistry 77, no. 10 (2005): 1753-1805. DOI: https://doi.org/10.1351/pac200577101753

Lunardi, Claure N., Anderson J. Gomes, Fellipy S. Rocha, Jacopo De Tommaso, and Gregory S. Patience. "Experimental methods in chemical engineering: Zeta potential." The Canadian Journal of Chemical Engineering 99, no. 3 (2021): 627-639. DOI: https://doi.org/10.1002/cjce.23914

Smith, Barton A., and B. R. Ware. "Apparatus and methods for laser Doppler electrophoresis." Contemporary Topics in Analytical and Clinical Chemistry: Volume 2 (1978): 29-54. DOI: https://doi.org/10.1007/978-1-4615-6731-8_2

Paik, Ungyu, and Vincent A. Hackley. "Influence of solids concentration on the isoelectric point of aqueous barium titanate." Journal of the American Ceramic Society 83, no. 10 (2000): 2381-2384. DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01565.x

Rodríguez, K., & Araujo, M. (2006). Temperature and pressure effects on zeta potential values of reservoir minerals. Journal of colloid and interface science, 300(2), 788-794. DOI: https://doi.org/10.1016/j.jcis.2006.04.030

Al Mahrouqi, Dawoud, Jan Vinogradov, and Matthew D. Jackson. "Temperature dependence of the zeta potential in intact natural carbonates." Geophysical Research Letters 43, no. 22 (2016): 11-578. DOI: https://doi.org/10.1002/2016GL071151

Mukherjee, Sayantan, Purna Chandra Mishra, and Paritosh Chaudhuri. "Stability of heat transfer nanofluids–a review." ChemBioEng Reviews 5, no. 5 (2018): 312-333. DOI: https://doi.org/10.1002/cben.201800008

Chakraborty, Samarshi, and Pradipta Kumar Panigrahi. "Stability of nanofluid: A review." Applied Thermal Engineering 174 (2020): 115259. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115259

Hordy, Nathan, Delphine Rabilloud, Jean-Luc Meunier, and Sylvain Coulombe. "High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors." Solar Energy 105 (2014): 82-90. DOI: https://doi.org/10.1016/j.solener.2014.03.013

Yılmaz Aydın, Duygu, and Metin Gürü. "Nanofluids: preparation, stability, properties, and thermal performance in terms of thermo-hydraulic, thermodynamics and thermo-economic analysis." Journal of Thermal Analysis and Calorimetry (2021): 1-34. DOI: https://doi.org/10.1007/s10973-021-11092-8

Cacua, Karen, Fredy Ordoñez, Camilo Zapata, Bernardo Herrera, Elizabeth Pabón, and Robison Buitrago-Sierra. "Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability." Colloids and Surfaces A: Physicochemical and Engineering Aspects 583 (2019): 123960. DOI: https://doi.org/10.1016/j.colsurfa.2019.123960

Sharma, S. K., and Shipra Mital Gupta. "Preparation and evaluation of stable nanofluids for heat transfer application: a review." Experimental Thermal and Fluid Science 79 (2016): 202-212. DOI: https://doi.org/10.1016/j.expthermflusci.2016.06.029

Yin, Zhaoqin, Fubin Bao, Chengxu Tu, Yicong Hua, and Rui Tian. "Numerical and experimental studies of heat and flow characteristics in a laminar pipe flow of nanofluid." Journal of Experimental Nanoscience 13, no. 1 (2018): 82-94. DOI: https://doi.org/10.1080/17458080.2017.1413599

Bortolato, Matteo, Simone Dugaria, Filippo Agresti, Simona Barison, Laura Fedele, Elisa Sani, and Davide Del Col. "Investigation of a single wall carbon nanohorn-based nanofluid in a full-scale direct absorption parabolic trough solar collector." Energy conversion and management 150 (2017): 693-703. DOI: https://doi.org/10.1016/j.enconman.2017.08.044

Struchalin, P. G., V. S. Yunin, Kirill V. Kutsenko, O. V. Nikolaev, A. A. Vologzhannikova, M. P. Shevelyova, O. S. Gorbacheva, and B. V. Balakin. "Performance of a tubular direct absorption solar collector with a carbon-based nanofluid." International Journal of Heat and Mass Transfer 179 (2021): 121717. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121717

Mahian, Omid, Evangelos Bellos, Christos N. Markides, Robert A. Taylor, Avinash Alagumalai, Liu Yang, Caiyan Qin et al. "Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake." Nano Energy 86 (2021): 106069. DOI: https://doi.org/10.1016/j.nanoen.2021.106069

Buzea, Cristina, Ivan I. Pacheco, and Kevin Robbie. "Nanomaterials and nanoparticles: sources and toxicity." Biointerphases 2, no. 4 (2007): MR17-MR71. DOI: https://doi.org/10.1116/1.2815690

Fiorito, S., A. Serafino, F. Andreola, A. Togna, and G. Togna. "Toxicity and biocompatibility of carbon nanoparticles." Journal of Nanoscience and Nanotechnology 6, no. 3 (2006): 591-599. DOI: https://doi.org/10.1166/jnn.2006.125

Bystrzejewska-Piotrowska, Grazyna, Jerzy Golimowski, and Pawel L. Urban. "Nanoparticles: their potential toxicity, waste and environmental management." Waste management 29, no. 9 (2009): 2587-2595. DOI: https://doi.org/10.1016/j.wasman.2009.04.001

Lam, Chiu-Wing, John T. James, Richard McCluskey, and Robert L. Hunter. "Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation." Toxicological sciences 77, no. 1 (2004): 126-134. DOI: https://doi.org/10.1093/toxsci/kfg243

Dreher, Kevin L. "Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles." Toxicological sciences 77, no. 1 (2004): 3-5. DOI: https://doi.org/10.1093/toxsci/kfh041

Schrand, Amanda M., Mohammad F. Rahman, Saber M. Hussain, John J. Schlager, David A. Smith, and Ali F. Syed. "Metal‐based nanoparticles and their toxicity assessment." Wiley interdisciplinary reviews: Nanomedicine and Nanobiotechnology 2, no. 5 (2010): 544-568.

Schrand, Amanda M., Mohammad F. Rahman, Saber M. Hussain, John J. Schlager, David A. Smith, and Ali F. Syed. "Metal‐based nanoparticles and their toxicity assessment." Wiley interdisciplinary reviews: Nanomedicine and Nanobiotechnology 2, no. 5 (2010): 544-568. DOI: https://doi.org/10.1002/wnan.103

Krajnik, Peter, F. Pusavec, and Amir Rashid. "Nanofluids: properties, applications and sustainability aspects in materials processing technologies." In Advances in Sustainable Manufacturing: Proceedings of the 8th Global Conference on Sustainable Manufacturing, pp. 107-113. Springer Berlin Heidelberg, 2011. DOI: https://doi.org/10.1007/978-3-642-20183-7_16

Alagumalai, Avinash, Caiyan Qin, K. E. K. Vimal, Evgeny Solomin, Liu Yang, Ping Zhang, Todd Otanicar et al. "Conceptual analysis framework development to understand barriers of nanofluid commercialization." Nano Energy 92 (2022): 106736. DOI: https://doi.org/10.1016/j.nanoen.2021.106736

Elsaid, Khaled, A. G. Olabi, Tabbi Wilberforce, Mohammad Ali Abdelkareem, and Enas Taha Sayed. "Environmental impacts of nanofluids: a review." Science of the Total Environment 763 (2021): 144202. DOI: https://doi.org/10.1016/j.scitotenv.2020.144202

Otanicar, Todd P., and Jay S. Golden. "Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies." Environmental science & technology 43, no. 15 (2009): 6082-6087. DOI: https://doi.org/10.1021/es900031j

Gupta, Hemant Kumar, G. D. Agrawal, and Jyotirmay Mathur. "Assessment of energy and economic advantages by proposing nanofluid based direct absorption in solar collectors for India." In International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), pp. 1-8. IEEE, 2014. DOI: https://doi.org/10.1109/ICRAIE.2014.6909133

Part, Florian, Gudrun Zecha, Tim Causon, Eva-Kathrin Sinner, and Marion Huber-Humer. "Current limitations and challenges in nanowaste detection, characterisation and monitoring." Waste management 43 (2015): 407-420. DOI: https://doi.org/10.1016/j.wasman.2015.05.035

Younis, Sherif A., Esraa M. El-Fawal, and Philippe Serp. "Nano-wastes and the environment: Potential challenges and opportunities of nano-waste management paradigm for greener nanotechnologies." Handbook of environmental materials management (2018): 1-72. DOI: https://doi.org/10.1007/978-3-319-58538-3_53-1

Mehrali, Mohammad, Emad Sadeghinezhad, Sara Tahan Latibari, Mehdi Mehrali, Hussein Togun, M. N. M. Zubir, S. N. Kazi, and Hendrik Simon Cornelis Metselaar. "Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids." Journal of materials science 49 (2014): 7156-7171. DOI: https://doi.org/10.1007/s10853-014-8424-8

Mehrali, Mohammad, Emad Sadeghinezhad, Sara Tahan Latibari, Salim Newaz Kazi, Mehdi Mehrali, Mohd Nashrul Bin Mohd Zubir, and Hendrik Simon Cornelis Metselaar. "Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets." Nanoscale research letters 9 (2014): 1-12. DOI: https://doi.org/10.1186/1556-276X-9-15

Omrani, A. N., E. Esmaeilzadeh, M. Jafari, and A. Behzadmehr. "Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids." Diamond and Related Materials 93 (2019): 96-104. DOI: https://doi.org/10.1016/j.diamond.2019.02.002

Chiam, H. W., W. H. Azmi, N. A. Usri, Rizalman Mamat, and N. M. Adam. "Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture." Experimental Thermal and Fluid Science 81 (2017): 420-429. DOI: https://doi.org/10.1016/j.expthermflusci.2016.09.013

Celata, Gian Piero, Francesco D’Annibale, Andrea Mariani, Salvatore Sau, Emanuele Serra, Roberto Bubbico, Carla Menale, and Heiko Poth. "Experimental results of nanofluids flow effects on metal surfaces." Chemical Engineering Research and Design 92, no. 9 (2014): 1616-1628. DOI: https://doi.org/10.1016/j.cherd.2013.12.003

Fotowat, Shahram, Serena Askar, Mohammed Ismail, and Amir Fartaj. "A study on corrosion effects of a water based nanofluid for enhanced thermal energy applications." Sustainable Energy Technologies and Assessments 24 (2017): 39-44. DOI: https://doi.org/10.1016/j.seta.2017.02.001

Arshad, Adeel, Mark Jabbal, Yuying Yan, and David Reay. "A review on graphene based nanofluids: Preparation, characterization and applications." Journal of Molecular Liquids 279 (2019): 444-484. DOI: https://doi.org/10.1016/j.molliq.2019.01.153

Rashmi, W., A. F. Ismail, M. Khalid, A. Anuar, and T. Yusaf. "Investigating corrosion effects and heat transfer enhancement in smaller size radiators using CNT-nanofluids." Journal of materials science 49 (2014): 4544-4551. DOI: https://doi.org/10.1007/s10853-014-8154-y

Srinivas, V. C. V. K. N. S. N., Ch VKNSN Moorthy, V. Dedeepya, P. V. Manikanta, and V. Satish. "Nanofluids with CNTs for automotive applications." Heat and Mass Transfer 52 (2016): 701-712. DOI: https://doi.org/10.1007/s00231-015-1588-1

Patel, Ashok R., Elisabeth CM Bouwens, and Krassimir P. Velikov. "Sodium caseinate stabilized zein colloidal particles." Journal of Agricultural and Food Chemistry 58, no. 23 (2010): 12497-12503. DOI: https://doi.org/10.1021/jf102959b

Gil, Antoni, Eduard Oró, Gerard Peiró, Servando Álvarez, and Luisa F. Cabeza. "Material selection and testing for thermal energy storage in solar cooling." Renewable Energy 57 (2013): 366-371. DOI: https://doi.org/10.1016/j.renene.2013.02.008

Khan, Mohammed Mumtaz A., R. Saidur, and Fahad A. Al-Sulaiman. "A review for phase change materials (PCMs) in solar absorption refrigeration systems." Renewable and sustainable energy reviews 76 (2017): 105-137. DOI: https://doi.org/10.1016/j.rser.2017.03.070

Sainz-Mañas, Miguel, Françoise Bataille, Cyril Caliot, Alexis Vossier, and Gilles Flamant. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review." Energy 260 (2022): 124916. DOI: https://doi.org/10.1016/j.energy.2022.124916

Özerinç, Sezer, Sadık Kakaç, and Almıla Güvenç Yazıcıoğlu. "Enhanced thermal conductivity of nanofluids: a state-of-the-art review." Microfluidics and Nanofluidics 8 (2010): 145-170. DOI: https://doi.org/10.1007/s10404-009-0524-4

Choi, S. U. S., Z. George Zhang, WLockwoodFE Yu, F. E. Lockwood, and E. A. Grulke. "Anomalous thermal conductivity enhancement in nanotube suspensions." Applied physics letters 79, no. 14 (2001): 2252-2254. DOI: https://doi.org/10.1063/1.1408272

Lee, S., SU-S. Choi, S, and Li, and J. A. Eastman. "Measuring thermal conductivity of fluids containing oxide nanoparticles." (1999): 280-289. DOI: https://doi.org/10.1115/1.2825978

Maxwell, James Clerk. A treatise on electricity and magnetism. Vol. 1. Oxford: Clarendon Press, 1873.

Xuan, Yimin, Qiang Li, and Weifeng Hu. "Aggregation structure and thermal conductivity of nanofluids." AIChE Journal 49, no. 4 (2003): 1038-1043. DOI: https://doi.org/10.1002/aic.690490420

Lee, Donggeun. "Thermophysical properties of interfacial layer in nanofluids." Langmuir 23, no. 11 (2007): 6011-6018. DOI: https://doi.org/10.1021/la063094k

Hamilton, R. Lꎬ, and O. K. Crosser. "Thermal conductivity of heterogeneous two-component systems." Industrial & Engineering chemistry fundamentals 1, no. 3 (1962): 187-191. DOI: https://doi.org/10.1021/i160003a005

Prasher, Ravi, William Evans, Paul Meakin, Jacob Fish, Patrick Phelan, and Pawel Keblinski. "Effect of aggregation on thermal conduction in colloidal nanofluids." Applied Physics Letters 89, no. 14 (2006): 143119. DOI: https://doi.org/10.1063/1.2360229

Chopkar, M., S. Sudarshan, P. K. Das, and I. Manna. "Effect of particle size on thermal conductivity of nanofluid." Metallurgical and materials transactions A 39 (2008): 1535-1542. DOI: https://doi.org/10.1007/s11661-007-9444-7

Eastman, Jeffrey A., S. U. S. Choi, Sheng Li, W. Yu, and L. J. Thompson. "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles." Applied physics letters 78, no. 6 (2001): 718-720.

Chopkar, Manoj, Prasanta K. Das, and Indranil Manna. "Synthesis and characterization of nanofluid for advanced heat transfer applications." Scripta Materialia 55, no. 6 (2006): 549-552. DOI: https://doi.org/10.1016/j.scriptamat.2006.05.030

Timofeeva, Elena V., Jules L. Routbort, and Dileep Singh. "Particle shape effects on thermophysical properties of alumina nanofluids." Journal of applied physics 106, no. 1 (2009): 014304. DOI: https://doi.org/10.1063/1.3155999

Li, Calvin H., Wesley Williams, Jacopo Buongiorno, Lin-Wen Hu, and G. P. Peterson. "Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3∕ water nanofluids." Journal of heat Transfer 130, no. 4 (2008). DOI: https://doi.org/10.1115/1.2789719

Murshed, S. M. S., K. C. Leong, and C. Yang. "Investigations of thermal conductivity and viscosity of nanofluids." International journal of thermal sciences 47, no. 5 (2008): 560-568. DOI: https://doi.org/10.1016/j.ijthermalsci.2007.05.004

Zhang, Xing, Hua Gu, and Motoo Fujii. "Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles." Journal of Applied Physics 100, no. 4 (2006): 044325 DOI: https://doi.org/10.1063/1.2259789

Zhang, X., H. Gu, and M. Fujii. "Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids." International Journal of Thermophysics 27 (2006): 569-580. DOI: https://doi.org/10.1007/s10765-006-0054-1

Roy, Gilles C., Cong Tam Nguyen, D. Doucet, S. Suiro, and Thierry Mare. "Temperature dependent thermal conductivity evaluation of alumina based nanofluids." In International Heat Transfer Conference 13. Begel House Inc., 2006. DOI: https://doi.org/10.1615/IHTC13.p8.150

Yu, Wenhua, David M. France, Jules L. Routbort, and Stephen US Choi. "Review and comparison of nanofluid thermal conductivity and heat transfer enhancements." Heat transfer engineering 29, no. 5 (2008): 432-460. DOI: https://doi.org/10.1080/01457630701850851

Hong, K. S., Tae-Keun Hong, and Ho-Soon Yang. "Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles." Applied Physics Letters 88, no. 3 (2006): 031901. DOI: https://doi.org/10.1063/1.2166199

Wang, Xian-ju, and Dong-sheng Zhu. "Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids." Chemical Physics Letters 470, no. 1-3 (2009): 107-111. DOI: https://doi.org/10.1016/j.cplett.2009.01.035

Pak, Bock Choon, and Young I. Cho. "Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles." Experimental Heat Transfer an International Journal 11, no. 2 (1998): 151-170. DOI: https://doi.org/10.1080/08916159808946559

Xuan, Yimin, and Wilfried Roetzel. "Conceptions for heat transfer correlation of nanofluids." International Journal of heat and Mass transfer 43, no. 19 (2000): 3701-3707. DOI: https://doi.org/10.1016/S0017-9310(99)00369-5

Shah, R. K., A. L. London, and Frank M. White. "Laminar flow forced convection in ducts." (1980): 256-257. DOI: https://doi.org/10.1115/1.3240677

Kakaç, Sadik, and Anchasa Pramuanjaroenkij. "Review of convective heat transfer enhancement with nanofluids." International journal of heat and mass transfer 52, no. 13-14 (2009): 3187-3196. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006

Özerinç, Sezer. "Heat transfer enhancement with nanofluids." Master's thesis, Middle East Technical University, 2010.

Godson, Lazarus, B. Raja, D. Mohan Lal, and S. E. A. Wongwises. "Enhancement of heat transfer using nanofluids—an overview." Renewable and sustainable energy reviews 14, no. 2 (2010): 629-641. DOI: https://doi.org/10.1016/j.rser.2009.10.004

Masuda, Hidetoshi, Akira Ebata, and Kazumari Teramae. "Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles." (1993): 227-233. DOI: https://doi.org/10.2963/jjtp.7.227

Wang, Xinwei, Xianfan Xu, and Stephen US Choi. "Thermal conductivity of nanoparticle-fluid mixture." Journal of thermophysics and heat transfer 13, no. 4 (1999): 474-480. DOI: https://doi.org/10.2514/2.6486

Eastman, Jeffrey A., S. U. S. Choi, Sheng Li, W. Yu, and L. J. Thompson. "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles." Applied physics letters 78, no. 6 (2001): 718-720. DOI: https://doi.org/10.1063/1.1341218

Xie, Hua-qing, Jin-chang Wang, Tong-geng Xi, and Yan Liu. "Thermal conductivity of suspensions containing nanosized SiC particles." International Journal of Thermophysics 23 (2002): 571-580.

Xie, Huaqing, Jinchang Wang, Tonggeng Xi, Yan Liu, and Fei Ai. "Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid." Journal of Materials Science Letters 21 (2002): 1469-1471. DOI: https://doi.org/10.1023/A:1020060324472

Das, Sarit Kumar, Nandy Putra, Peter Thiesen, and Wilfried Roetzel. "Temperature dependence of thermal conductivity enhancement for nanofluids." J. Heat Transfer 125, no. 4 (2003): 567-574. DOI: https://doi.org/10.1115/1.1571080

Murshed, S. M. S., K. C. Leong, and C. Yang. "Enhanced thermal conductivity of TiO2—water based nanofluids." International Journal of thermal sciences 44, no. 4 (2005): 367-373. DOI: https://doi.org/10.1016/j.ijthermalsci.2004.12.005

Li, Calvin H., and G. P. Peterson. "Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)." Journal of Applied Physics 99, no. 8 (2006): 084314. DOI: https://doi.org/10.1063/1.2191571

Beck, Michael P., Yanhui Yuan, Pramod Warrier, and Amyn S. Teja. "The effect of particle size on the thermal conductivity of alumina nanofluids." Journal of Nanoparticle research 11 (2009): 1129-1136. DOI: https://doi.org/10.1007/s11051-008-9500-2

Mintsa, Honorine Angue, Gilles Roy, Cong Tam Nguyen, and Dominique Doucet. "New temperature dependent thermal conductivity data for water-based nanofluids." International journal of thermal sciences 48, no. 2 (2009): 363-371. DOI: https://doi.org/10.1016/j.ijthermalsci.2008.03.009

Turgut, A. L. P. A. S. L. A. N., I. Tavman, M. Chirtoc, H. P. Schuchmann, C. Sauter, and SJIJoT Tavman. "Thermal conductivity and viscosity measurements of water-based TiO 2 nanofluids." International Journal of Thermophysics 30 (2009): 1213-1226. DOI: https://doi.org/10.1007/s10765-009-0594-2

Assael, M. J., I. N. Metaxa, J. Arvanitidis, D. Christofilos, and Christos Lioutas. "Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants." International Journal of Thermophysics 26 (2005): 647-664. DOI: https://doi.org/10.1007/s10765-005-5569-3

Liu, Min-Sheng, Mark Ching-Cheng Lin, I-Te Huang, and Chi-Chuan Wang. "Enhancement of thermal conductivity with carbon nanotube for nanofluids." International communications in heat and mass transfer 32, no. 9 (2005): 1202-1210. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2005.05.005

Ding, Yulong, Hajar Alias, Dongsheng Wen, and Richard A. Williams. "Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)." International Journal of Heat and Mass Transfer 49, no. 1-2 (2006): 240-250. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009

Chaudhari, Kiran, Nilesh P. Salunke, and Vijay R. Diware. "Multi objective optimization of diesel engine performance and emission characteristics using Taguchi–Grey relational analysis." Int J Adv Technol Eng Explor 10, no. 100 (2023): 363. DOI: https://doi.org/10.19101/IJATEE.2022.10100018

Chaudhari, Kiran, Nilesh P. Salunke, and Vijay R. Diware. "A comprehensive review on performance improvement of diesel and biodiesel fueled CI engines using additives." International Journal of Performability Engineering 17, no. 9 (2021): 815. DOI: https://doi.org/10.23940/ijpe.21.09.p8.815824

Bhushan Patil, Nilesh Salunke, Vijay Diware, Shakeel Rehman, Khursheed B. Ansari. 2024. “Stability Assessment of Emerging Phase Change Materials for Solar Thermal Storage in Absorption Refrigeration: A Review.” International Journal of Green Energy, doi:10.1080/15435075.2024.2413678

Bhushan Patil, Nilesh Salunke, Vijay Diware. 2022. “Solar Absorption Refrigeration Systems Use Productive Thermal Storage PCMs: Review” PRATIBHA: INTERNATIONAL JOURNAL OF SCIENCE, SPIRITUALITY, BUSINESS AND TECHNOLOGY (IJSSBT) Special Issue: International Conference on Global Trends in Science, Technology, Humanities, Commerce & Management 2022 (ICGTSTHCM 2022) Vol. 8, No. 2, January 2022, ISSN (Print) 2277-7261

Patil, Bhushan Youraj, Nilesh P. Salunke, Vijay R. Diware, and Shakeel Rahman. "Characterization of Shape and Size-Dependent Chemical and Thermal Stability of Phase Change Materials for Energy Storage Application." Available at SSRN 4770455.

Downloads

Published

2024-04-30

How to Cite

Patil, B. Y., Salunke, N. P., Diware, V. R., Suryavanshi, V. K., & Patil, P. S. (2024). CONCENTRATION OF NANO FLUID/BASE FLUID SUSPENSION ENHANCE SURFACE CHARGE WITH PH STABILITY FOR LOW TO MEDIUM TEMPERATURE PHASE CHANGE MATERIALS. ShodhKosh: Journal of Visual and Performing Arts, 5(4), 525–542. https://doi.org/10.29121/shodhkosh.v5.i4.2024.2258