OPTIMIZING PIGMENT PRODUCTION FROM PENICILLIUM SP. FOR SUSTAINABLE SILK DYEING

Authors

  • Shumaila Naaz Research Scholar, Department of Fabric and Apparel Science, Institute of Home Economics, University of Delhi, New Delhi, India, and Assistant Professor, Lakshmibai College, University of Delhi, New Delhi, India
  • Charu Gupta Professor, Department of Fabric and Apparel Science, Institute of Home Economics, University of Delhi, New Delhi, India
  • Sunita Aggarwal Professor, Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India

DOI:

https://doi.org/10.29121/shodhkosh.v5.i4.2024.2093

Keywords:

Silk, Dyeing, Penicillium, Fastness

Abstract [English]

This study explores the use of microbial pigments from Penicillium sp. as a sustainable alternative to synthetic dyes in textile dyeing, focusing on optimizing pigment production and assessing color fastness on silk. Static Potato Dextrose Broth (PDB) at 28°C produced the highest concentration of red pigment after 27 days of incubation, with an optical density (O.D) of 1.010 at λmax = 530 nm. In contrast, 15°C resulted in slower pigment production (O.D = 0.860), and 37°C showed negligible growth. Adjusting the PDB pH to 5 increased pigment yield, aligning with previous studies showing Penicillium sp. thrive in acidic conditions. The final broth pH decreased to 4.0 due to organic acid production by the fungus.
Silk samples dyed with these pigments were evaluated for color strength and fastness. The colorimetric values indicated moderate color intensity (K/S = 4.25) with a bright, pastel-like appearance (L* = 81.23), and a warm reddish-yellow hue (a* = 9.23, b* = 6.48). Fastness tests showed excellent performance for dry rub (rating 5), good results for wet rub (rating 4), and favorable wash fastness (rating 4 for staining and color change). However, light fastness was lower, suggesting potential fading under prolonged exposure.
Overall, the study identifies Penicillium sp. as a promising source of natural dyes for silk, with optimized fermentation conditions (PDB, 28°C, pH 5, 27 days) leading to high pigment yield and strong fastness performance, offering a sustainable alternative to synthetic dyes in textiles.

References

A. Abubakar, H. A. Suberu, I. M. Bello, R. Abdulkadir, O.Daudu, and A. A. Lateef(2013)., Effect of pH on mycelial growth and sporulation of Aspergillus parasiticus, J. Plant Sci., 4, 64

Celestino, J., dos, R., de Carvalho, L. E., Lima, M. da P., Lima, A. M., Ogusku, M. M. & de Souza, J. V. B. (2014). Bioprospecting of Amazon soil fungi with the potential for pigment production. Process Biochem 49, 569–575. DOI: https://doi.org/10.1016/j.procbio.2014.01.018

De Santis, D., Moresi, M., Gallo, A. M., & Petruccioli, M. (2005). Assessment of the dyeing properties of pigments from Monascus purpureus. Journal of Chemical Technology & Biotechnology, 80(9),1072–1079. doi:10.1002/jctb.1285 DOI: https://doi.org/10.1002/jctb.1285

Fox, E. M. & Howlett, B. J. (2008). Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11, 481–487. DOI: https://doi.org/10.1016/j.mib.2008.10.007

J. M. Scervino, V. L. Papinutti, M. S. Godoy, M. A. Rodriguez, D. Monica, M. Recchi, M. J. Pettinari, and A.M. Godeas, (2011). Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. J. Appl. Microbiol., 110, 1215 DOI: https://doi.org/10.1111/j.1365-2672.2011.04972.x

Kim, C. H., Kim, S. W., & Hong, S. I. (1999). An integrated fermentation– separation process for the production of red pigment by Serratia sp. KH-95. Process Biochemistry, 35(5), 485–490. doi:10. 1016/S0032-9592(99)00091-6 DOI: https://doi.org/10.1016/S0032-9592(99)00091-6

L. A. Purwanto, D. Ibrahim, and H. Sudrajat, (2009).World J. Chem., 4, 34

Liu, X., Wang, Y., Sun, S., Zhu, C., Xu, W., Park, Y., & Zhou, H. (2013). Mutant breeding of Serratia marcescens strain for enhancing prodigiosin production and application to textiles. Preparative Biochemistry and Biotechnology, 43(3), 271–284. doi:10.1080/ 10826068.2012.721850 DOI: https://doi.org/10.1080/10826068.2012.721850

M. M. Yasser, A. S. M. Mousa, O. N. Massoud, and S. H. Nasr, J. (2014). Biol. Earth Sci., 4, 2084

Mapari, S. A., Thrane, U., & Meyer, A. S. (2010). Fungal polyketide azaphilone pigments as future natural food colorants? Trends in Biotechnology, 28(6), 300–307. doi:10.1016/j.tibtech.2010.03.004 DOI: https://doi.org/10.1016/j.tibtech.2010.03.004

Me´ ndez, A., Pe´ rez, C., Montan˜ e´ z, J. C., Martı´nez, G. & Aguilar, C. N.(2011). Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ Sci B 12, 961–968. DOI: https://doi.org/10.1631/jzus.B1100039

Nagia, F. A., & El-Mohamedy, R. S. R. (2007). Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. Dyes and Pigments, 75(3), 550–555. doi:10.1016/j.dyepig.2006.07.002 DOI: https://doi.org/10.1016/j.dyepig.2006.07.002

Parekh, S., Vinci, V. A., & Strobel, R. J. (2000). Improvement of microbial strains and fermentation processes. Applied Microbiology and Biotechnology, 54(3), 287–301. doi:10.1007/s002530000403 DOI: https://doi.org/10.1007/s002530000403

R€ais€anen, R., Nousiainen, P., & Hynninen, P. H. (2002). Dermorubin and 5-chlorodermorubin natural anthraquinone carboxylic acids as dyes for wool. Textile Research Journal, 72(11), 973–976. doi:10. 1177/004051750207201107 DOI: https://doi.org/10.1177/004051750207201107

Downloads

Published

2024-04-30

How to Cite

Naaz, S. . ., Gupta, C., & Aggarwal, S. (2024). OPTIMIZING PIGMENT PRODUCTION FROM PENICILLIUM SP. FOR SUSTAINABLE SILK DYEING. ShodhKosh: Journal of Visual and Performing Arts, 5(4), 500–506. https://doi.org/10.29121/shodhkosh.v5.i4.2024.2093