THE IMPACT OF AI AND ML ON ORGANIZATIONAL STRUCTURE

Authors

  • Seema Bhuvan Assistant Professor, NCRD’s Sterling Institute of Management Studies, Nerul, Navi Mumbai

DOI:

https://doi.org/10.29121/shodhkosh.v5.i1.2024.1922

Keywords:

AI, ML, Organizational Dynamics, Organizational Hierarchies, Organizational Structure

Abstract [English]

The integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies into business operations is profoundly reshaping organizational structures. This paper explores the implications of AI and ML on organizational hierarchies, job roles, decision-making processes, and the overall strategic orientation of companies. By analyzing contemporary case studies and theoretical perspectives, we seek to understand how these technologies drive changes in organizational dynamics, enhance efficiency, and introduce new challenges.

References

Brynjolfsson, E., & McElheran, K. (2016). The Productivity Jigsaw: The Missing Pieces of AI and Machine Learning. MIT Sloan Management Review.

Chui, M., Manyika, J., & Miremadi, M. (2016). Where machines could replace humans—and where they can’t (yet). McKinsey Quarterly.

Davenport, T. H., & Ronanki, R. (2018). Artificial Intelligence for the Real World. Harvard Business Review.

Susskind, R., & Susskind, D. (2015). The Future of the Professions: How Technology Will Transform the Work of Human Experts. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198713395.001.0001

Prof. Neha Saini ,Artificial intelligence & its applications, 2023 ijrti | volume 8, issue 4 | issn: 2456-3315

Niklas Kühl, Max Schemmer, Marc Goutier, Gerhard Satzger, Artificial intelligence and machine learning,Electronic Markets,https://doi.org/10.1007/s12525-022-00598-0, Springer published online 09 November 2022 DOI: https://doi.org/10.1007/s12525-022-00598-0

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https:// doi. org/ 10. 1109/CVPR. 2016. 90 DOI: https://doi.org/10.1109/CVPR.2016.90

He, S., Rui, H., & Whinston, A. B. (2018). Social media strategies in product-harm crises. Information Systems Research, 29(2), 362–380. https:// doi. org/ 10. 1287/ isre. 2017. 0707 DOI: https://doi.org/10.1287/isre.2017.0707

Hegazy, I. M., Faheem, H. M., Al-Arif, T., & Ahmed, T. (2005). Performance evaluation of agent-based IDS. Proceedings of the 2nd international conference on intelligent computing and information systems (ICICIS 2005) (pp. 314–319). DOI: https://doi.org/10.1109/MP.2005.1462463

Hein, A., Weking, J., Schreieck, M., Wiesche, M., Böhm, M., & Krcmar, H. (2019). Value co-creation practices in business-to-business platform ecosystems. Electronic Markets, 29(3), 503–518. https:// doi. org/ 10. 1007/ s12525- 019- 00337-y DOI: https://doi.org/10.1007/s12525-019-00337-y

Hemmer, P., Schemmer, M., Vössing, M., & Kühl, N. (2021). Human- AI complementarity in hybrid intelligence systems: A structured literature review. PACIS 2021 Proceedings.

Hirt, R., Kühl, N., & Satzger, G. (2019). Cognitive computing forcustomer profiling: meta classification for gender prediction. Electronic Markets, 29(1), 93–106. https:// doi. org/ 10. 1007/ s12525- 019- 00336-z DOI: https://doi.org/10.1007/s12525-019-00336-z

Downloads

Published

2024-06-30

How to Cite

Bhuvan, S. (2024). THE IMPACT OF AI AND ML ON ORGANIZATIONAL STRUCTURE. ShodhKosh: Journal of Visual and Performing Arts, 5(1), 1787–1800. https://doi.org/10.29121/shodhkosh.v5.i1.2024.1922