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ABSTRACT

Nowadays people are using social media to show their talent, to voice their viewpoint to
society, etc. The use of social media has drastically grown during and after pandemic.
Since, the power of social media is known to us, it would be beneficial to invest in such
trending companies. But, understanding market pattern will be required to get maximum
benefit from stock market, otherwise it may lead to losses. Machine learning is an
essential tool for predicting such tasks. Here deep learning based Gated Recurrent Unit
neural network is used for prediction. To develop optimized model, grid search algorithm
is used for Gated Recurrent Unit hyper parameter tuning. Also, the hyper parameter
values obtained by the model was used to verify and predict stock prices for other
companies.

Keywords: Machine Learning, Gated Recurrent Unit, Back Propagation, Neural
Networks, Hyper Parameter Tuning

1. INTRODUCTION

Stock price prediction is one of the matters confronting investors in everyday
financial market. Researchers are working to study the market behaviour and
pattern. As understanding market will help investors to obtain higher trading
benefits, to know trend and avoid losses. Sometimes the decision process of trend
prediction may get biased due to aspects such as trader’s psychology, investors
demand of high returns, social media statements, political scenario, others opinion,
influencers, etc. The trends might be predicted false or wrong if decisions were
made in panic situations. Machine learning can be the best option to avoid being
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emotionally invested. Deep learning can provide promising results while working
with highly volatile data.

Recurrent Neural Network (RNN) is one of the models of deep learning used for
both classification and regression. The Gated Recurrent Unit (GRU) is an upgraded
model of RNN which uses the back propagation algorithm to find optimal weights
for model. RNN has mainly two sub models GRU and Long Short-Term Memory
(LSTM). Here, GRU model was selected as it contains two gates as compared to three
gates in LSTM which decreases the computational cost.

One of the results of efficient market hypothesis says that stock prices can be
predicted by analysing historical price movements Fama (1970) Gao et al. (2021)
Hence, historical stock data of previous years is used for the prediction. Due to the
pandemic situation use of social media increased. People tends to move towards
social media more not only to entertain but to share their opinions and ideas to
world. Increasing use of social media accounts leads to study the pattern and
behaviour, as investing in social media companies would be profitable. So, stock
prices of the social media companies were analysed and predicted, to understand
their pattern.

2. LITERATURE REVIEW

Shena et al. (2018) used hybrid of Gated recurrent unit and support vector
machines to overcome gradients explosion and vanishing gradient problem for
financial signal forecasting. Three stock indexes S&P 500 Index, Heng Seng Index
and Deutscher Aktien index of previous 27 years were used for forecasting. The
hybrid approach of model consist of traditional layers with Gated recurrent unit cell
and output layer was changed with support vector machine model. The obtained
results were compared with traditional machine learning models such as support
vector machines and deep neural network. The comparison of results concluded
that hybrid model outperformed another traditional model. Shena et al. (2018)

Rautand Sethia (2018) predicted (t+5) th day stock prices and provided buying
and selling strategies. For model 50 different indicators were calculated from which
independent component analysis was applied for dimension reduction.
Performance of Support Vector Machine, Artificial neural network, Long Short-Term
Memory, and Gated Recurrent Unit were compared to find optimal model where
Long Short Term Memory model provided highest returns. Raut and Sethia (2018)

Das et al. (2019) predicted stock prices of four stock indices by means of
evolutionary algorithm and Machine learning algorithm. Firefly algorithm, Genetic
algorithm, Principal component analysis and Factor analysis were used as a feature
reduction technique. Reduced features were applied on Extreme learning machine,
online sequential extreme learning machine and Recurrent backpropagation neural
network and the results were compared to check optimised model. The results
shows that combination of firefly algorithm for feature reduction and online
sequential extreme learning machine for prediction gives optimized results. Das et
al. (2019)

Selvamuthu et al. (2019) used traditional machine learning models i.e., Support
vector machines and Neural networks for forecasting stock price. In Neural
networks three models Scaled conjugate gradient, Levenberg-Marquardt and
Bayesian regularization were applied on 15 min dataset of India company and tick
dataset. Every model provides similar accuracy but first two models take few hours
to forecast, and Bayesian regularization model takes few days to forecast providing
best accuracy from all the models used. Selvamuthu et al. (2019)
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Polamuri and Srinivas (2019) used supervised learning technique Random
Forest for stock price forecasting. Extremes randomize tree regressor is used in
Random Forest model, to improve forecasting results. This extreme randomize tree
offers reduction in variance. Linear regression, Multivariate regression, Decision
tree and Support vector machine algorithms were used for forecasting where
Random Forest algorithm with extreme randomize regressor give best result.
Polamuri and Srinivas (2019)

Pengfei and Yan (2019) used the combined PSR and Long Short-Term Memory
model to predict prices for six stock indices. ARIMA, Support Vector Regressor,
Multi-layer Perceptron, Long Short-Term Memory were used to compared with the
proposed combined model. The compared result shows that, combined LSTM and
PSR model gives better predictions as compared to others for stock indices. Pengfei
and Yan (2019).

Assaf and Kolasani (2020) predicted stock movements with the help of
sentiment analysis. Different traditional machine learning models were applied on
different sentiments for prediction in which Support vector machine performed
well. So, Support Vector Machine was selected for stock sentiment analysis based on
tweets made with word stock. The sentiment values of previous day were used for
next day’s prediction. Boosted regression tree and multi-layer perceptron Neural
Network were compared to train sentiment values for stock index value estimation.
Results showed that from both model multi-layer perceptron Neural Network
performed better. Assaf and Kolasani (2020)

Shahi et al. (2020) compared Long Short-Term Memory and Gated Recurrent
Unit for stock price prediction. Information such as last traded price, news headline
and body were used with stock price data. Experiments were carried out with news
sentiments and without news sentiments where the news sentiment model
performed better. Both models with the financial news data performed equally well
where Gated Recurrent Unit performed slightly better compared to Long Short-
Term Memory. Shahi et al. (2020)

Touzani and Douzi (2021) studied the trading strategies of Moroccan stock
market. Two models Long Short-Term Memory and Gated Recurrent Unit were used
for prediction. Long Short-Term Memory model was used for short term predictions
and Gated Recurrent Unit model was used for medium term predictions. Based on
prediction, rules were implemented to buy or sell stocks. Transactions were
simulated applying these rules to estimate returns for stocks selections. Touzani and
Douzi (2021)

Ghosh and Gor (2022) used K-means clustering and Random Forest Regression
algorithms for sales prediction. They used clustering methods for ad campaigning
analysis. First, ad groups are created using the K-Means clustering algorithm then
Random Forest Regressor algorithm is used to optimize sales conversion and
predict future sales. Impressions, clicks, and spent are used as independent
variables to predict total number of people that asked about the product after
viewing the ad on Facebook. They also calculated Mean Absolute Error and Root
Mean Square Error. The integration of two algorithms K-means clustering and
Random Forest regressor gives permissive result with 75% accuracy. Ghosh and Gor
(2022), Bhavsar and Gor (2022)

Srivinay et al. (2022) predicted stock prices using Prediction rule ensemble
technique and Deep neural network. Initially moving average technical indicators
were used with 20, 50, 200 days average. Then with the help of prediction rule
ensemble technique various rules were applied for stock price prediction. Also,
Hyper parameter such as layers, learning rate, epochs and neurons were hyper
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tuned. At the end the results of both methods were combined by average which
shows that the combined results show better performance than Artificial neural
network and Deep neural network model. Srivinay et al. (2022)

3. DATA DESCRIPTION AND DATA PRE-PROCESSING

Data Collection: Here, stock price data for five different social media companies
Google (2344 days), Facebook (2344 days), Snapchat (1295 days), Pinterest (601
days) and Twitter (2127 days) was obtained namely dataset1 to 5 respectively. The
dataset includes high, open, low, close, adjusted close price and volume of the stocks.
(fin) (ws;j)

Data cleaning: There was no null/Nan values in dataset. Also, no outliers were
removed form data. The column with adjusted close price was removed as it was
highly corelated with close price. (Bhavsar & Gor, Predicting Restaurant Ratings
using Back Propagation Algorithm, 2022)

Train and test data: 70% / 30% of ratio was used for training and testing
purpose respectively. (Bhavsar & Gor, Predicting Restaurant Ratings using Back
Propagation Algorithm, 2022)

Figure 1
Google Facebook Pinterest
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Snapchat Twitter
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Figure 1 Dataset description with all parameters (fin) (wsj)

4. MODEL DESCRIPTION OF BIDIRECTIONAL GRU WITH
DENSE LAYERS CHO ET AL. (2014) RAJPUROHIT ET AL.
(2021)

Gated Recurrent Unit (GRU) can be considered as an upgraded or improvised
version of standard Recurrent Neural Network. It was introduced by Cho, et al. in
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2014 and known as variation of LSTM. GRU’s main aim is to solve vanishing gradient
problem which arises in typical Recurrent neural networks. Hidden layer of GRU
contains mainly two gates Update gate and Reset gate that helps in how much or
which information to be passed in future and which past information to be forget
shown in figure (A). Rajpurohit et al. (2021)

Figure 2
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Figure 2 GRU structure for update and reset gate Rajpurohit et al. (2021)

For time step t, update gate can be termed as z; and defined as z; =
o(W,x; + U,h;_,). Similarly reset gate can be termed as r; and defined as r; =
o(W,x; + U,h,_,). Correspondingly, hidden state computed as h; = tanh (Wx; +
¢ © Uh;_;). And the final output computed as h; = z; Oh;_; + (1 — z; )Oh;. Where,
X; is an input of current state, h;_; is an output of previous hidden state and
W, W,,U,, U, W,U are weights. O this notation denotes the pairwise
multiplication or a Hadamard product. Cho et al. (2014), Rajpurohit et al. (2021),
Bhavsar and Gor (2022)

Adaptive moment estimation - Adam optimizer Kingma and Ba (2015), Dozat
(2015)

As GRU is a neural network, it also forward and backward propagate in similar
manner to Artificial Neural Network. Here Adaptive moment estimation optimizer
was used for backpropagation. Following is the equation for Adam optimizer:

, Vg ’ Vi ’ St derror
W =w; — where V') =——, S =—, Vi =B Vi1 + (1 —
t t /S't+e t 1_511: t 1_55 t .31 t—1 ( .81) dw;

derror

2
and S = B,S;_1 + (1 — ;) [ B, ] Where V is exponential moving average and S

squared moving average of gradients, initially taken as 0. Default values taken as
«=0.001, B_1=0.9, f_2=0.999 and e=10" (-8). Kingma and Ba (2015), Dozat (2015)
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Figure 3
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Figure 3 Proposed Neural network and Backpropagation Algorithm

5. PROPOSED METHODOLOGY

The model is divided into mainly three parts

Data preparation which includes pre-processing, scaling, and cleaning.

Hyper-parameter tuning with the help of Grid Search algorithm on
training dataset.

Stock price prediction with the help of Gated Recurrent Unit.

The GRU model with following configuration was developed. Same as the
number of parametersi.e., 5 neurons are taken in input and 1 neuron in output layer.

For hidden layer, ‘tanh’ activation function was taken.

Adam optimizer was used for backpropagation. (The optimizer was
considered in model because it has ability to update learning rate as
well as gradient at every step.)

Proposed Backpropagation Algorithm is shown in Figure 3
Truncated normal was taken as kernel initializer.
40 epochs were considered for model with early stopping criteria.

As the model was regression type, output layer contains linear
activation function.

Optimized values for number of neurons, layers, dropout value, etc
were obtained by hyper parameter tuning.

Hyper parameters help to control the process of learning for given model.
Hyper parameter tuning provides optimal values of hyper parameters for the
proposed model. Here, hyper parameters such as number of hidden layers, number
of neurons in each layer, batch size and dropout are tuned with the help of Grid
search algorithm. Where the optimal values obtained for number of hidden layers
was 3, number of neurons was 64, batch size was 64 and dropout 0.2. Once the
model gets tuned on training dataset, optimized valued were used in testing dataset
to study the results. Model is developed in Python language.
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Figure 4
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Figure 4 Hyper parameter tuning of hidden layers, neurons, batch size and drop out

Figure 5

Model: “sequential”

Layer (type) Qutput Shape Faram &
dropout (Dropout) (Mone, 25, B4) @
gru_1 (GRU) (Mone, &4) 24580
dropout_1 (Dropout) (None, &4) a
dense (Dense) (Mone, &4) 4162
dense_1 (Dense) (None, 1) 65

Total params: 42,817
Trainable params: 42,817
Non-trainable params: @

Figure 5 Summary of purposed model

6. RESULT AND DISCUSSION

The hyper parameter tuning algorithm was applied on the google stock price
dataset. The obtained values of hyperparameters were applied on other four stock
price dataset, to check efficiency of the proposed hyper parameter tuned GRU
model.

The accuracy of the model was calculated by r2 score and loss was measured
by Root mean square error (RMSE). Results showed that the model performed well
with every dataset. As shown in the table dataset 2 and 3 performed bit less as
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compared to the other dataset, though the results were good enough. The number
of days was taken less in dataset 2 and 3, as compared to other datasets. Due to the
less data fed to the model, performance of the model was decreased.

Table 1
Table 1 Predicted stock price of test dataset

RMSE r2score
Dataset 1 0.0015 0.9543
Dataset 2 0.0276 0.9488

Dataset 3 0.055 0.8996
Dataset 4 0.0466 0.8104
Dataset 5 0.0237 0.9812

Figure 6
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Figure 7 Predicted & actual price of Dataset 2
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Figure 8
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Figure 9 Predicted & actual price of Dataset 4
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Figure 10 Predicted & actual price of Dataset 5
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7. CONCLUSION

Here, stock price prediction for social media companies was carried out with
the help of Deep Learning GRU model. Grid search algorithm was used to tune the
hyper parameters for the GRU model. The benefit of hyper parameter tuning is to
avoid the manual trial and error method. Grid search will suggest optimized hyper
parameter values for model. The reason for selecting GRU was due to its faster
computational efficiency. The model was developed to study the market behaviour
on social media companies. The results showed that companies with a smaller
amount of data performed little less as compared to the companies with large
amount of data. GRU model overall achieved good performance, which shows the
ability of model to perform well even with less amount of dataset. Future work can
be carried out using different evolutionary algorithms for hyper parameter tuning.
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