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ABSTRACT 
This paper is based on new extension of the exponential distribution named 
“Exponentiated Exponential Poisson Inverse (IEEP) distribution”. The distribution is 
based on lifetime issues containing three parameters. Likelihood method is used to 
estimate the parameters of the distribution. Explicit expressions for reliability/survival 
function, the hazard rate function, reversed hazard rate, the quantile function and mode 
are introduced. Maximum Likelihood estimates as well as asymptotic confidence interval 
are obtained using theory of the Maximum likelihood. For illustration and application, a 
real data set is analyzed and compared with three other model of literature. Model fitted 
here is better compared to other models for data considered. All the graphical and 
computation analysis is performed using R programming. 
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1. INTRODUCTION 
Statistical distributions are the basic aspects of all parametric statistical 

techniques including inference, survival analysis, modelling and reliability etc. In 
recent years, new generate families of continuous models are derived. Lifetime 
problems can be solved by using the existing probability models but to get more 
precise result, we need some flexible probability models. Due to constant failure 
rate, exponential model cannot explain data with variable failure rate. Hence, misuse 
of exponential lifetime model will not be suitable. Here, our aim is to introduce a 
new three parameter lifetime distribution with strong physical motivations. At 
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present many of new models are proposed by modifying, merging, and adding or 
removing some parameters in existing models Marshall and Olkin (2007). That is 
existing models can be defined in new family of distributions. Several techniques 
can be defined to form new family of distribution adding some extra parameters to 
the existing distributions Rinne (2009). and Pham and Lai (2007). 

CDF of the continuous random variable X following exponential distribution 
having constant θ   is given as, 

 
                         ( ; ) 1 ; 0, 0.xF x e xθθ θ−= − > >  . 

 
Some alternative generalizations of exponential distribution have been 

proposed to give some flexibility. 
Although there are several generalizations of the exponential distributions, 

following two distributions have received more attention in literature with respect 
to others. 

• Marshall & Olkin (1997) introduced inventive general method by adding 
some parameters to family of distributions which states that X have the 
Marshall-Olkin extended exponential (MOEE) distribution, say 

( , )X MOEE α λ  as  

 

  

1( ; , ) ;  0
1 (1 )

x

x
eF x x

e

λ

λα λ
α

−

−
−

= >
− −

  

 

Here  > 0 and  > 0 α λ  are called tilt and scale constants. MOEE model 
reduces to exponential distribution for α  equal to 1.  

• Generalize: exponential (GE) distribution Gupta and Kundu (1999) can have 
decreasing and right skewed with single mode value. Let X follows GE 
distribution. That is ( , )X GE α λ . The CDF of X is given by 

 

  { }( ; , ) 1  ;x > 0xF x e
αλα λ −= −   

 
Above distribution has expression of the survival function like Weibull 

distribution and properties similar to Gamma distribution. 
To derive this model, we have used exponential distribution and the Poisson 

distribution. Let us consider N system-based plant working independently where N 
is truncated Poisson rv. Suppose each of the system contains α independent and 
identically distributed units arranged in parallel. Suppose X is a random variable 
defining time to fail the system Ristić & Nadarajah (2014) and Kus (2007) then 
probability mass function of the N will be. 

 

  ( )
( ) ; 0

! 1 exp( )

n

P N n
n

λ λ
λ

= = >
− −
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where n = 1, 2, 3… 
Unconditional CDF of X having three parameters was introduced and was 

named as EEP Ristić & Nadarajah (2014) distribution 
 

                ( )
( )( )1( ; , , ) 1 exp 1

1
xF x e

e

αβ
λ

α β λ λ −
−

   = − − −  
  −   

 

 
We have defined here three parameters Inverse Exponentiated Exponential 

Poisson distribution (IEEP) taking inverse of random variable X with CDF 
 

           
( )

( )( )/1( ; , , ) 1 1 exp 1 .
1

xF x e
e

αβ
λ

α β λ λ −
−

   = − − − −  
  −   

  

 
2. MODEL ANALYSIS  

2.1. INVERSE EXPONENTIATED EXPONENTIAL POISSON (IEEP) 
DISTRIBUTION 

Let X follows new extended exponential distribution then CDF of the proposed 
model having three parameters is,           

 

( )
( )( ) ( )/1( ; , , ) 1 1 exp 1 ; 0, , , 0

1
xF x e x

e

αβ
λ

α β λ λ α β λ−
−

   = − − − − > >  
  −                                   

(1) 

 
2.2. PROBABILITY DENSITY FUNCTION 
We defined model with pdf in expression as 
 

( ) ( ) ( )( )/
// 1

2( ) 1 exp 1 , 0.
1

x
xxef x e e x
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β αββ α
λ
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−− −
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                                  (2) 

 
2.3. THE RELIABILITY FUNCTION 
It is defined as probability of not failing an event before given time t. Reliability 

function of IEEP is 
 

( ) ( )
( )( )/1 1 exp 1

1
xR x e

e

αβ
λ

λ −
−

   = − − −  
  −   

 ; x > 0                                        (3) 

 
2.4. THE HAZARD RATE (HRF) 
Hazard function rate is defined as the instantaneous failure rate at time t. HRF 

of proposed model is  
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; x > 0                      (4) 

 
Some of density function curves and hazard curves of IEEP using some of values 

ofα  and β  are plotted in Figure 1 at constant value of λ = 2 indicating that density 
curve of the IEEP is of different shapes at different parameters values. 
Figure 1 

                                                                              
Figure 1 The PDF (Left) and HRF(Right) of IEEP for Various Values of α   and  β  Taking λ = 2 

 
Behaviour of the hazard rate shows high flexibility for different values of 

parameters. The HRF curve shows that the function is unimodal. Function is 
monotonically increasing along with monotonically decreasing. It is inverted 
bathtub hazard rates not showing constant hazard rates.  We know that many of the 
lifetime’s distribution does not show upside-down bathtub hazard rates, but it 
exhibits in case of proposed model.  

 
2.5. STATISTICAL PROPERTIES 
Major characteristics such as quantile function, skewness, and kurtosis etc of 

the proposed model IEEP are derived in this section. 
 

2.6. QUANTILE FUNCTION 
To study the theoretical aspect of probability model, quantile function is used. 

Statistical measures like, partition values, skewness as well as kurtosis of the 
probability models can be studied using quantile function. Generating function of 
random variable can be expressed in terms of quantile function. Quantile function 
can be used as the alternative function of PDF and CDF for finding the nature of the 
distributions. Quantile function of function can be obtained by using the relation

1( ) (u). Q u F −=  Quantile function for model IEEP is, 
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1/
( ) 1ln[1 {1 ln{1 (1 )(1 )}} ]

Q u
u e λ α

β

λ
−

−
=

− − − − −
  

; 0 < u < 1.                                  (5) 

 
U is uniform variate U (0, 1). If we put u = 0.5 in (5) then median will be obtained 

of the model can be obtained.  
 

2.7. ASYMPTOTIC PROPERTIES 
This property of pdf the density function follows condition of 

0
limit ( ) limit ( )
x x

f x f x
→ →∞

=   with the resulting value as 0. That is, if both the limits 

converge to zero the proposed model satisfies the asymptotic behavior indicating 
that model value exists. 
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            (6) 

 
Since both the limits exist and have the limiting values as zero, we confirm that 

the proposed modal has unique mode. The necessary and sufficient conditions for 

mode are ( ) 0df x
dx

=  and 
2

2 .( 0d f x
dx

<  By using these necessary and sufficient 

conditions, mode of the proposed model is obtained as, 
 

{ }/ / /2 (1 ) 1 (1 ) 0x x xx e e eβ β β ααβ λ β− − −− + − − + =                  (7) 

 
2.8. SKEWNESS AND KURTOSIS 
These are the measures that describe the nature like consistency of data and 

the normality of probability distribution. Bowley's skewness Al-Saiary et al. (2019) 
based on quartiles can be calculated using expression as 

 

                     

(0.75) 2 (0.50) ( .0.25)
(0.75) (0.25)k

Q Q QS
Q Q
− +

=
−

 

 
Moors (1988) and Al-Saiary et al. (2019) introduced kurtosis using Octiles 

given by the relation. 
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 Q (.) is quantile functions of the model.  
Statistical measures of this new model are obtained. For this, 100 random 

samples from the quantile function mentioned in expression (5). Here, we have 
taken initial values of the parameters as 40, 22, 2α β λ= = = . By using the 
generated values different basic statistics of the proposed model are calculated. 
Table 1 Mean, Median, Mode, Sd, Skewness and Kurtosis of IEEP contains summaries 
for some set of parameters. 
Table 1 

Table 1 Mean, Median, Mode, Sd, Skewness and Kurtosis of IEEP 

α β λ Mean Median Mode Sd Skewness Kurtosis 
40 20 2 6.75 6.57 6.21 1.416 0.535 3.245 

39.5 20 2 6.67 6.6 6.64 1.416 0.54 3.25 
38.5 22 2 6.83 6.643 6.27 1.448 0.546 3.26 
41 22 2 6.701 6.525 6.173 1.396 0.527 3.236 
42 22 2 6.653 6.481 6.137 1.376 0.52 3.227 

40.5 21.5 2 6.726 6.548 6.192 1.406 0.531 3.24 
40 20 2 6.751 6.571 6.211 1.416 0.535 3.245 
40 23 2.5 6.95 6.775 6.425 1.397 0.526 3.275 
40 23 3 7.133 6.959 6.611 1.375 0.53 3.31 

 

Standard deviation is decreasing when values of andα β are increasing. Also 

values of λ  are decreasing. Values of skewness as well kurtosis is not unique 
showing that distribution is skewed and not normal in nature. 

 
2.9. SOME EXPANSIONS 
Following distribution is derived for studying the various characteristic of the 

model by application of generalized binomial series. Taking | | 1, 0Z n< >  we can 
write. 

               
0

(1 ) ( 1) ; 0n i i

i

n
z Z n

i

∞

=

 
− = − > 

 
∑  

 
The power series expansion of corresponding to an exponential function is; 
 

                   
0

( 1) ( )
!

j j
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j

aze
j

∞
−

=

−
= ∑  

 
Using above two binomial series and exponential expansion in given pdf 

equation, the proposed model in series form is. 
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2
0 0
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x
i jk
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Where,  ( )

0

1
( 1)

!1

j
i j k

i jk
j

j
l k je λ

α ααβλ λψ
∞

+ +
−

=

−  
= −   

−   
∑  

 
3. CALCULATION OF MOMENTS 

Quantitative measurements of the distribution in form of function that 
describes characteristics of the probability distributions can be explained using 

moments. The thr  raw moment '
rµ  new model ~ ( , , )X IEEP α β λ is given as  

                            0
' ( ) ( )r r
r E X x f x d xµ ∞
= = ∫

                                                       
(9) 

 

Integrating equation (9), we can get thr  raw moments of the IEEP can be 
obtained as  

                            
0

' 1

0
( (1 )) (1 )r

ijk
i k

r i k rψ βµ
∞ ∞

−

= =
= − + + Γ −∑ ∑  

 
When r =1 then mean of the IEEP will be as 

       
0

'

0
i jk

k
r

i
µ ψ

∞ ∞

= =
= −∑ ∑  

 
Second order raw moment of IEEP can be obtained taking r as 2. That is. 

                    
0

'

0
(1 ) ( 1)i jk

i k
r i kµ ψ β

∞ ∞

= =
= − + + Γ −∑ ∑  

 
Using relation, ' ' 2

2 1var( ) ( )X µ µ= − , variance can be obtained. Mean median 
and others measures of the proposed model are given above in Table 1 Mean, 
Median, Mode, Sd, Skewness and Kurtosis of IEEP. Lower incomplete moments ( )s tϕ  
is given by 

                            0( ) ( )t s
s t x f x dxϕ = ∫                                                                   

(10) 

 

Lower incomplete gamma function 1
0

( , )
t s xs t x e dxγ − −= ∫ and density functions 

are used to   
find lower incomplete moment ( )s tϕ  as 
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The conditional moments is  

               
    

( ) ( )s
s tt x f x d xτ ∞

= ∫                                                                   
(11) 

 
Upper incomplete gamma function is 
 

                    1
0( , ) t s xs t x e dx− −Γ = ∫  

 
Using density function and upper incomplete gamma function in equation (11), 

we can get conditional moment as. 
 

     1

0 0
( ) ( (1 )) (1 , )s

s ijk
i k

t i k s tτ ψ β
∞ ∞

−

= =
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Similarly, MGF of the proposed model is given as; 
 

                             
0

( ) [ ] ( )
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X
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tM t E e E X
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Hence, we can get MGF as 
 
      1
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X
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r
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(12) 

 
3.1. RESIDUAL LIFE FUNCTION 
Here, thn moment of the residual life of random variable X of the IEEP can be 

defined by  

                             1( ) ( ) ( )
( )

n
n tm t x t f x dx

R t
∞

= −∫  

 
Expression ( )nx t−  can expanded using binomial series expansions as, 

 

                     
0
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n

n d n d d

d

n
x t x t

d
−

=

 
− = −  

 
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Hence, thn  moment of residual life of X of the distribution becomes. 
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Using upper incomplete gamma function in (13), we have 
 

                                                                                
0 0 0
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Also,  thn  moment of revised residual life function of X of the proposed model 
IEEP is found as 

                            
0

1( ) ( ) ( )
( )

t n
nM t t x f x dx

F t
= −∫  

 
Applying binomial expansion and substituting pdf, we can get following 

expression. 
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3.2. THE PROBABILITY WEIGHTED MOMENT 
The probability weighted moment can be obtained using relation 
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Applying the expansion of  
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Now, using equations (14) and (15), we can write 
 

  

)
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Integrating equation (17), we get 
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ijk ijk
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= = =
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3.3. ORDER STATISTICS 
 Let 1 2 nX X X< < <  is order statistics of any sample of size n from IEEP. 

The PDF of thm  order statistics David & Nagaraja (2004) is defined as, 
 

         ( ) 1
( ) ( ) ( )
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Where (.,.)B  denotes the beta function. Substituting the values of PDF and 

equation (16) replacing s by 1mν + − , we get 
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Where,       * ( 1) ijk ijk
n mνη ψ φ
ν
− 

= −  
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Now moment of the order statistics is  
 

           ( ) ( ) ( ) ( ) ( )0( ) { ,( )r r
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Using equations (18) and (19) the thr  moment of the order statistics become 
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3.4. R'ENYI AND Q-ENTROPIES 
The entropy is used in many fields such as in statistics, mathematics, 

engineering, physics, thermodynamics etc. It can be used to measures the variation 
of uncertainty of the random variable R'enyi entropy is defined as; 

 

 ( ) ( )1 log , 0, 1
1

I X f x d x
δ

δ δ δ
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Applying the expansion of 
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                                                                              where,     
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From equation (20), we can write  
 

         1 2

0 0

1( ) 2 { ( )} (2 1)
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Similarly, we can define q-entropy as; 
 

                                                                                        ( ) ( )1 log 1 , 0, 1
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q

Hq X f x dx q q
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∝

−∝

 
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∫  

 
Thus, we can define the q-entropy is as. 
 

       1 2
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1( ) [1 2 { ( )} (2 1)]
1q i jk
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−
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4. PARAMETER ESTIMATION TECHNIQUE 

4.1. ESTIMATION USING MAXIMUM LIKELIHOOD 
Here we found the MLE of the parameters for constructed model. The MLE of 

the parameters are based on the observed sample x1, x2,…,xn. The likelihood function 
of parameters ( , , )L α β λ  is given by 

 

( ) ( ) ( ){ }
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/ /1
2

1
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i i
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x x
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xe
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(22) 

 

Log likelihood function ( , , )L α β λ  is given by 
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1 1
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1 1

, , | ln ln(1 ) 1/ 2 ln( )

( 1) ln(1 ) (1 )i i

n n
i i

i i
n nx x

i i

x n n e x x

e e

λ

β β α

α β λ α βλ β

α λ

−

= =

− −

= =

= − − − −

+ − − − −

∑ ∑

∑ ∑



                                  

(23) 
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Here, differentiating the log likelihood function (23) and maximum likelihood 

estimators were obtained by equating the differentiated equations to zero. That is 
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Estimation of unknown parameters , ,α β λ  is done by solving nonlinear 

equations (24), (25) and (26). It will be difficult in solving these equations 
analytically so Newton- Rapson's iteration techniques is applied in log likelihood 
function of equation (23) using ()optim function of R. Let ( )ˆ ˆ ˆˆ , ,δ α β λ=


 is MLE of 

( ), , .Tδ α β λ=


 Asymptotic normality result is  ( ) 1

3( ) 0, ( )N Iδ δ δ
−

− →





. The 

fisher's information matrix ˆ( )I δ   given by; 
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The maximum likelihood estimates (MLE) ( )ˆ ˆ ˆˆ , ,δ α β λ=


 of ( )ˆ , , Tδ α β λ=

was obtained by solving three nonlinear equations analytically and using statistical 
software. 

The ( )1 %γ−  CI for constants ,α β  and λ  are obtained. Here we have used 
asymptotic normality of MLE method and Variances of estimated parameters using 
the inverse of ( )I δ of second derivatives of log likelihood function. The second order 
derivatives are  
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Let ( , , )δ α β λ=


 is the parameter vector and ˆ ˆ ˆˆ( , , )δ α β λ=  be 

corresponding MLE. This provides (δ̂ -δ  ) →  N 3  (0, ( ( )I δ  ) 1−  ) as asymptotic 

normal where ( )I δ  is fishers information matrix given by 
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It will be worthless that MLE gives asymptotic variance 1( ( ))I δ −


.  

Approximation of the asymptotic variance can be done by taking estimated values 
of the parameters. For this fisher’s information matrix ˆ( )O δ


   which is given as; 
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  where H is the hessian.  

 
We can obtain the observed information matrix maximizing the likelihood. For 

this Newton Rapshon algorithm is used. We have also find expression of variance 
covariance matrix as 
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Hence from asymptotic normality of MLE approximate   100(1-γ  ) % CI for the 
parameters are constructed using upper percentile standard normal variate as,   

 

/ 2 / 2 / 2
ˆ ˆ ˆ ˆˆ ˆvar( ) , var( )  and var( )z z zγ γ γα α β β λ λ± ± ±    

 
where /2zγ  is the upper percentile of standard normal variate. 

 
5. APPLICABILITY AND DATA ANALYSIS 

5.1. DATA SET 
This section represents analysis of real dataset to verify the proposed model. 

Sometimes electro migration can occur in circuit because failures in microcircuit 
happen due to the movement of atoms in the circuits. Data is from an accelerated 
life test that includes 59 conductors Schafft et al. (1987); Nelson and Doganaksoy 
(1995) where failure time is measured in hours with no any censoring of the 
observations. 

4.700, 6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 
8.591,6.129, 11.038, 5.381, 6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 
6.538,5.589, 5.807, 6.725, 8.532, 9.663, 6.369, 7.024, 8.336, 9.218, 7.945,6.869, 
6.352, 6.087, 6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 10.092, 7.496, 7.974, 8.799, 
7.683, 7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 6.071, 10.491, 5.923 
,4.531. 

 
5.2. DESCRIPTIVE DATA ANALYSIS 
Exploratory data analysis is a collection of different statistical analysis that 

explains and to summarize the data set used in research. Objective of this is to gain 
detailed idea of data set used. It may include some descriptive statistics as well as 
the graphical plots of the data. Following are main measures that can be included in 
descriptive data analysis. 
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• The boxplot, histogram, density curve etc. These are a graphical plot that 
help to find the pattern of the data and also helps to detect if there is any 
unusual pattern and observations in data.  

• Measures of location, measures of scatters, skewness, and kurtosis etc gives 
some specific aspect and nature of the data.  

R programming language is used to find summary of the data and the values 
obtained are tabulated below in table 
Table 2 

Table 2 Descriptive Statistics 

Min. Q1 Q2 Mean Q3 Max. Skewness Kurtosis 
2.997 6.052 6.923 6.98 7.941 11.038 0.193 3.088 

 
Figure 2 represents the boxplot and the histogram & and density fit of the 

proposed model IEEP.  
Figure 2 

                                                                       
Figure 2 Boxplot (Left Panel) and Histogram and Fitted Density Plot (Right Panel) 

 
6. PARAMETER ESTIMATION     

There are various methods and tools for optimization of the function. 
Forgetting maximum likelihood estimates (MLE) of the defined model log-likelihood 
function defined in expression (23) is maximized. The maximum likelihood 
estimates their standard error along with 95% confidence Interval (CI) for 
parameters ,α β  andλ  is obtained using R programming [R Development core 
Team, (2016)]. We have also used the quasi-Newton-Raphson algorithm in R [Rizzo, 
2008] for maximum likelihood estimation. 
Table 3 

Table 3  MLE, Standard Error and 95 Percent C. I 

Parameters MLEs Standard Error 95% C.l. 
alpha 40.5868 4.86 (31.068, 50.113) 
beta 22.7553 2.049 (18.739, 26.771) 

lambda 2.9968 1.251 (0.5450, 5.4490) 
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The profile plots of negative log-likelihood function of proposed model for  
,α β  and λ are plotted separately and are shown in Figure 3. 

Figure 3 

                                                                        

Figure 3 The Profile of Negative Log-Likelihood Functions of ,α β  andλ  

 
Parameters and standard errors of IEEP and other models such as 

Exponentiated Exponential Poisson (EEP) Joshi (2017) Distribution, Logistic 
Inverse Exponential (LIE) Chaudhary and Kumar (2020), The Kumaraswamy Half-
Cauchy distribution (KSHC) Ghosh (2014) distribution are estimated and are 
compared for the comparisons of the proposed model. Estimated parameters using 
MLE are mentioned in Table 4. 
Table 4 

Table 4 MLE and Standard Error of IEEP and the Other Distributions 

Probability model 
   

IEEP 40.5868(31.0160) 22.7553(2.0490) 2.9968(1.2510) 
EEP 9.8700(4.5008) 0.1774(0.0995) 21.0934(27.1612) 
LIE 5.3220(0.5830) - 4.7357(0.1433) 

KSHC 8.8568(5.7731) 118.5980(119.7700) 5.7472(4.9376) 
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6.1. MODEL COMPARISON 
Here, log-likelihood as well as the information criteria values like  (i) Akaike's 

information criteria (AIC), (ii) Bayesian information criteria(BIC) (iii) Corrected 
Akaike's information criteria(CAIC), and (iv) Hannan-Quinn Information 
Criteria(HQIC)are calculated and tabulated in Table 2 and Table 5 Following 
relations are used to find the values of AIC, BIC, CAIC and HQIC. 

 

    
ˆ2 ( ) 2AIC kθ= − + , ˆ2 ( ) ( )BIC klog nθ= − + ; 

      
 

      

2 ( 1)
1

k kCAIC AIC
n k

+
= +

− −
 and     

 

   ˆ2 ( ) 2 ( ( ))HQIC k n n nθ= − +   . 
 
where n and k are total number of samples and total number of constants 

respectively. Since IEEP has least information criteria values with respect to the 
other competing, it is considered that IEEP fits data well.  
Table 5  

Table 5 AIC, BIC, CAIC and HQIC of IEEP and Other Models 

Probability model AIC BIC CAIC HQIC 
IEEP 228.35 234.59 252.35 231.523 
EEP 228.65 234.88 252.65 231.813 
LIE 232.053 238.286 244.053 232.16 

KSHC 880.37 886.61 904.377 883.541 

 
7. MODEL VALIDATION 

For model validation, we can use different statistical techniques. Here we have 
used two types of graphical plots; probability versus probability (P-P) plots and 
quantile versus quantile (Q-Q) plots are drawn and are shown in Figure 5. PP and 
QQ plots show the theoretical distribution versus distribution. A P-P plot describes 
the points;

 
( )( ) ( )( ), ( ; ) ; 1, 2,....,i iF x F x i nδ =


 Where; δ


= ( )ˆ ˆˆ , ,α β λ  and ( )ix  is 

order statistics of proposed model. 
( )

1

1 ( )
n

n
i

F I x
n

A X
β =

∂
∂

= ≤∑ , is termed as the 

empirical distribution function, and (.)I  is the indicator function.  In same way, the 
QQ plot depicts the points; 

 

   1
( ) , ; ; 1,2,...,

1i
ix F i n

n
δ−   =  +  

 . 
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Figure 4 

                                                                        
Figure 4 P-P Plot in Left Panel and Q-Q Plot in Right Panel of the IEEP 

 
The IEEP fits better in both the empirical and fitted case of distribution function. 

For model validation, Kolmogrov - Smirnov test showed D = 0.0520 with p-value = 
0.9947 which means the model fits significantly. Curve for empirical distribution 
function and the fitted distribution function are plotted and is displayed in Figure 6  

Total Time Test (TTT) plot is also shown in right panel of the Figure 6. The 
Empirical version of TTT plot is given as 

            
( : ) : ( : )

1

1 1
( ) ;

n n
i n i n i n

i i

rT y n r y y
n = =

−



 = + − 



 
 

 
∑ ∑   

 
Where, r = 1, 2... n and ( : ) ( 1,2,..., )i ny i r=  be sample order statistics. Concave 

shape of Curve of the TTT plot shows that hazard rate curve is increasing. 
Figure 5 

                                                                        
Figure 5 Theoretical Versus Empirical Plot (Left) and TTT Plot (Right) 

 
Figure 6 in left panel displays the empirical distribution curve and the fitted 

distribution curve for the newly defined model corresponding to other models. In 
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Right panel of the Figure 6, histogram of the data and fitted density curve of the 
model under study and the competing models are displayed. 
Figure 6 

                                                                        
Figure 6 Estimated Fitted CDF with EDF (Left) and Estimated Fitted PDF 

 
8. SUMMARY AND CONCLUSION 

This article is based on derivation, study and application of newly introduced 
probability model having three parameters. It is name as Inverse Exponentiated 
Exponential Poisson Inverse along with some statistical and mathematical 
properties, probability, weighted moments, order statistics, skewness, kurtosis, 
residual life time, entropy and survival functions etc. Different information criteria 
values are obtained for both the IEEP and the considering model and are compared. 
Study also showed that the goodness of fit statistics has least test statistics and 
higher p value respective to the other considering model. We have also plotted the 
empirical cdf versus the fitted cdf as well as the histogram versus the fitted density 
plot of the models. All the statistical computations and the graphical measures are 
performed using R language programming. 
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