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ABSTRACT 

Composting is an important tool for recycling and proper disposal of organic waste. However, in small-scale 
composting, where total soil sealing and leachate collection is not carried out, elements such as P, Cu, Zn, Cd, Cr, Ni 
and Pb may accumulate in soil. This study aimed to assess phosphorus and heavy metal contents in soils of areas 
used for small-scale food waste composting. In order to do this, we sampled soil depths of 0-5, 5-10, 10-20, 20-30 
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and 30-40 cm of four areas with composting times of 16, 12, 7 and 1 year, in addition to four reference areas. All the 
study areas are located in the city of Florianópolis, Santa Catarina state, Brazil. We determined available P, Cu and 
Zn contents and total Cu, Zn, Cd, Cr, Ni and Pb contents in the soil samples. We found that the production of organic 
compost directly on the soil generally promoted increases in available P contents, which were above acceptable 
environmental limits, especially at the uppermost soil layers. Still, the presence of Cu, Zn, Cd, Cr, Ni and Pb was not 
an environmental liability in the composting areas, as the contents found were below those recommended by 
legislation.

  
1. INTRODUCTION 
 
Waste production in urban areas has increased significantly in recent decades, with emphasis on food waste, 

either due to improper handling during processing or wastage in restaurants and households. A suitable alternative 
for these wastes is composting, which is a biological process of decomposition and stabilization of organic substrates 
under controlled thermophilic and aerobic conditions (Bernal, 2009; Cadis & Henkes, 2014). Composting promotes 
oxidation and, consequently, mineralization and partial humification of waste organic matter. This results in a 
stabilized, pathogen-free, non-toxic product to plants with important chemical properties such as high pH and 
significant nutrient contents, which can be used for soil conditioning and plant nutrition (Chowdhury et al., 2013; 
Martínez-Blanco et al., 2013). 

There is typically leachate production during the composting process. The amount produced is dependent on 
the type of material used to make the compost, the size of the pile and the volume of precipitation on the compost 
pile. The leachate from the pile transports chemical elements from the composting material. The elements and their 
concentrations vary. P, Cu and Zn contents of 1.2 to 32.7, 0.3 to 3.0 and 1.0 to 5.0 mg L-1 have been found in 100 to 
800 L of leachate per m2, obtained from piles with 460 kg of dry matter per m3, respectively (Christensen, 1984; 
Christensen & Tjell, 1984; Chatterjee et al., 2013). 

In Brazil, in composting systems classified as small-scale (Brasil et al., 2017), piles are usually made directly on 
the soil and leachate from the compost pile is not collected. Furthermore, the soil under the pile is not fully sealed. 
When there is soil sealing, it is done with compacted clay, but it does not prevent leachate percolation into soil. This 
may result in the accumulation of nutrients and heavy metals in soil. In a literature review, Hargreaves et al. (2008) 
found an increase in available contents of P, Cu and Zn in soil with the addition of urban solid waste compost. 
However, these authors also highlighted the increase in total contents of Cd, Cr, Ni and Pb. Still, in a study with annual 
applications of municipal solid waste compost (40 and 80 t ha-1) in a wheat-growing area for four years, Ayari et al. 
(2010) found increases in total Cu, Zn, Cd, Cr, Ni and Pb contents at a depth of 0-20 cm. 

The increase in available or total contents of P, Cu, Zn, Cd, Cr, Ni and Pb in soil, as observed in several studies 
using organic sources (Ceretta et al., 2010a; Ayari et al., 2010; Guo & Li, 2012; Lourenzi et al., 2014; Couto et al., 
2015ab, Lourenzi et al., 2016), may cause imbalances in the environment such as eutrophication resulting from 
increased P content in water (Smith et al., 2006). Also, the presence of high Cu, Zn, Ni, Cd, Cr and Pb contents may 
even result in phytotoxicity and hinder plant growth (Kopittke et al., 2010). In this sense, in a literature review on 
heavy metal phytotoxicity in plants, Kopittke et al. (2010) observed a general response behavior of plants to the 
presence of heavy metals in the solution. The degree of toxicity was as follows Pb>Cu>Cd>Ni≈Zn, with average toxic 
concentrations (in µM) of 0.30 (Pb); 2.0 (Cu); 5.0 (Cd); 19.0 (Ni) and 25.0 (Zn). Cu, Zn and Cr are considered essential 
elements for humans, while Cd, Ni and Pb are non-essential elements. However, all of these elements can cause 
toxicity in humans. Some symptoms of heavy metal poisoning are hyperglycemia and liver glucose (Cu); tissue injury 
and anemia (Zn); pneumonia, gastroenteritis, cardiomyopathy, and cancer (Cd); skin lesion, pulmonary edema, and 
lung cancer (Cr); neurological effects and lung cancer (Ni); nervous system disorders and intestinal irritation (Pb) 
(Kabata-Pendias & Mukherjee, 2007). Therefore, it is important to assess the contents of these elements in soil, as 
they can be absorbed by plants (Ji et al., 2018) or reach water sources (Rajeshkumar et al., 2018), and cause health 
problems to human beings. 

Thus, this study aimed to assess phosphorus and heavy metal contents in soils of areas used for small-scale food 
waste composting in the city of Florianópolis, Santa Catarina state, Brazil. 
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2. MATERIAL AND METHODS 
 
 DESCRIPTION OF THE STUDY SITE AND COMPOSTING PROCESS 

 
Eight areas located in the city of Florianópolis, state of Santa Catarina, Brazil, were selected for this study (Table 

1). Four of which had a history of small-scale composting (Brasil, 2017) and four areas adjacent to the composting 
sites used as reference areas (Table 1). However, the composting and reference areas were not set up on natural 
soils of the region, but rather on landfill sites with soil from other regions or with mixed clayey soil and construction 
waste. Each area assessed in this study was prepared differently for the making of the compost piles. Areas 1C and 
1R were prepared with construction waste (inert material) at deeper layers and material with higher sand content 
at surface layers. On the other hand, areas 2C and 2R were made up of construction waste and clayey soil. Areas 3C 
and 3R were located over a dumping ground set up in 1990. Area 3C contained material from construction waste 
and clayey soil, while 3R was composed of a landfill with soil from adjacent mangrove areas. Lastly, 4C was located 
in an area previously used for shrimp ponds, which was landfilled with construction waste and clayey soil, while 4R 
(similar to 3R) was composed of soil from adjacent mangrove areas. 

 
Table 1: Selected areas, location, coordinates and composting time. 

Area Location Coordinates Composting time 
1C UFSC 27°35’50.35’’ S 48°30’55.12’’ W 12 years 
1R UFSC Reference 
2C UFSC 27°34’43.20’’ S 48°30’19.34’’ W 16 years 
2R UFSC Reference 
3C COMCAP 27°35’0.13’’S 48°30’51.49’’ W 7 years 
3R COMCAP Reference 
4C UFSC 27°35’6.20’’ S 48°30’32.29’’ W 1 year 
4R UFSC Reference 

UFSC: Universidade Federal de Santa Catarina; COMCAP: Companhia Melhoramentos da Capital; The letters “C” and “R” 
refer to composting and reference areas, respectively. 

 
All the composting areas were outdoors, with no protection from precipitation and no leachate collection. The 

compost piles were built with food waste (material with low C/N ratio), including vegetables, fruits, grains, meat and 
processed products (cooked or fresh) from restaurants, cafeterias, supermarkets, etc., as well as shavings, sawdust 
or pruned material from urban trees (material with high C/N ratio). 

Approximately 700 to 1000 tons of waste per year was added to the composting areas. The waste was arranged 
in piles of variable length, width of 1.5-2.0 m and height of 1.3-1.5 m when built manually, and 3.0 m wide and tall 
when built with the help of implements (Inácio & Miller, 2009; Maestri, 2010). Each pile holds approximately 1.33 
tons of material per m3. As there is no set position within the area, each new pile was built at a different location, 
which means that the whole area had a compost pile on its surface at some point. 

The composting method used was static piles with passive aeration, known as the UFSC method (Inácio & Miller, 
2009). The piles are not turned, and they are built using at least 1/3 of structural material (material with high C/N 
ratio). Food waste was added to the piles 2 to 3 times a week, until the desired size was reached. Every time new 
material was added, it was mixed with the material from the upper part of the pile. The piles were built with a 30 to 
50 cm layer of structural material (sawdust) followed by a 20 to 25 cm layer of food waste. A layer of grass clippings 
of approximately 25 cm was added to the sides and surface to protect the piles. The composting process lasted 90 to 
180 days from building the piles until the final compost was obtained. This process was carried out similarly in all 
the composting areas. It is important to note that in areas 1C and 3C, the soil was scraped at a depth of around 10 
cm when the compost pile was removed, and a new layer of soil was added to these areas prior to the installation of 
new piles. 
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 SOIL COLLECTION 
 
In January 2014 (areas 1C and 1R) and February 2015 (other areas), three trenches of approximately 30 x 30 x 

40 cm were opened in each area with a shovel, and the soil was collected at depths of 0-5, 5-10, 10-20, 20-30 and 30-
40 cm. Each trench represents a pseudo-replication of the collected area. After collection, the samples were taken to 
the Laboratório de Análise de Solo, Água e Tecidos Vegetais of the NEPEA-SC (Núcleo de Ensino, Pesquisa e Extensão 
em Agroecologia) of the Department of Rural Engineering of the Universidade Federal de Santa Catarina (UFSC). 
Samples were then dried in a forced-air oven at approximately 45°C, manually ground with a wooden rolling pin, 
passed through a 2 mm sieve and reserved for analysis. 

 
 PHYSICAL AND CHEMICAL ANALYSIS OF THE SOIL 

 
In the soil samples, particle size analysis was performed according to the Pipette method (EMBRAPA, 1997), 

and the data is shown in Table 2. In addition, available P contents extracted by Mehlich 1 (Tedesco et al., 1995) were 
determined by colorimetry (Murphy & Riley, 1962). Available Cu and Zn contents extracted by 0.01 mol L-1 EDTA 
(Chaignon et al., 2009) were determined by atomic absorption spectrophotometer (AAS). Pseudo-total contents of 
Cu, Zn, Cd, Cr, Ni and Pb were obtained from method 3050B proposed by the Environmental Protection Agency (EPA, 
1996), which does not dissolve the elements that make up the mineral structure. To this end, we used 1.0 g of soil 
from each sample and then added 5 mL of concentrated HNO3 in digestion tubes, which were placed in a digestion 
block at 95 °C for 10 min and cooled for 15 min. Then, 5 mL of HNO3 was added and the tubes were again heated to 
95 °C for two more hours. After this period, the samples were cooled for 3 min and 1 mL of distilled water and 1.5 
mL of 30% H2O2 were added. After effervescence ceased, an additional 5 mL of H2O2 was added and the samples were 
reheated in a digestion block for 2 hours at 95 °C. Finally, the samples were cooled and 10 mL of concentrated HCl 
and 20 mL of distilled water were added and then heated for 15 min at 95 °C. The aliquots were cooled, filtered and 
volume adjusted to 50 mL. Cu and Zn contents in extracts were determined by AAS, and Cd, Cr, Ni and Pb contents in 
extracts were determined by atomic emission spectrometry (AES). 
 

Table 2: Sand, silt and clay contents in soil of the composting areas and corresponding reference areas. 
Depth, cm Sand Silt Clay Sand Silt Clay 

g kg-1 g kg-1 
1C 1R 

0-5 805 80 113 651 188 159 
5-10 626 155 218 736 167 96 

10-20 575 211 213 741 159 99 
20-30 591 244 164 638 216 145 
30-40 597 179 223 726 117 155 

 2C 2R 
0-5 593 193 212 495 246 258 

5-10 599 191 209 334 316 349 
10-20 619 174 205 225 327 447 
20-30 570 206 222 174 433 392 
30-40 590 205 204 170 390 438 

 3C 3R 
0-5 695 128 175 505 203 291 

5-10 638 151 210 469 241 288 
10-20 574 208 217 424 279 296 
20-30 681 134 183 464 277 257 
30-40 654 177 168 549 259 191 

 4C 4R 
0-5 482 189 327 638 189 171 

5-10 428 211 359 570 238 191 
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10-20 403 206 390 615 199 185 
20-30 495 264 239 693 184 121 
30-40 498 57 443  715 150 134 

 
The contaminant potential of Pin the composting areas was assessed through available P contents. In order to 

do this, we used parameters obtained by Gatiboni et al. (2015) in which the authors assessed the contaminant 
potential of P and established levels for the Environmental Critical Limit of P (ECL-P) in soil. The following equation 
was used: ECL-P = 40 + % of soil clay. Thus, the ECL-P of each area was established using the data obtained in the 
composting areas. Samples of the organic compost were characterized, and the values are shown in Table 3. 

 
Table 3: Average chemical characteristics of the organic composts produced in the composting piles. 

Parameter Value Parameter Value 
pH 8.9 Na, mg kg-1 532.0 

Humidity, % 32.9 Cu, mg kg-1 28.4 
TOC, % 31.7 Zn, mg kg-1 15.3 

P, % 0.86 Cd, mg kg-1 0.44 
K, % 0.9 Cr, mg kg-1 3.0 
Ca, % 3.4 Ni, mg kg-1 1.3 
Mg, % 0.4 Pb, mg kg-1 5.0 

Values of total Cd, Cr, Ni and Pb in the compost were taken from Neto (2017). 
  

 STATISTICAL ANALYSIS 
 
The data was submitted to analysis of variance (F-test, p < 0.05) after testing for homogeneity of variance. To 

compare the composting areas and corresponding reference areas, the data was evaluated by Student's t-test. The 
means of the depths were compared by the Scott-Knott test (p < 0.05) within each area. The variables available P 
(aP), available Cu (aCu), available Zn (aZn), total Cu (tCu), total Zn (tZn), total Cr (tCr) and total Pb (tPb) of all the 
areas and depths were subjected to Principal Component Analysis (PCA). 

 
3. RESULTS AND DISCUSSION 
 
Available P contents were higher in all the composting areas compared to their corresponding reference areas 

(Figure 1). The highest available P contents were found at the 0-5 cm layer. Contents found at this layer were 1200, 
8900, 250 and 3400% higher in 1C, 2C, 3C and 4C compared to their reference areas, respectively. These results 
were expected as the literature supports that compost application to soil increases available P contents. In a study 
in which three soil types were incubated for 330 days with various sources of organic waste, Carmo et al. (2016) 
found that the application of 10.8 t ha-1 of urban waste compost promoted an increase in soil available P content 
compared to the control treatment. In a study carried out in Ireland, Courtney & Mullen (2008) applied doses of 25, 
50 and 100 t ha-1 of spent mushroom compost and found an increase in soil available P contents at all doses. The 
increase in soil available P in the composting areas occurs mainly due to P present in the compost pile that reaches 
the soil profile, in addition to the presence of organic acids that compete with P for adsorption sites of soil colloids 
and favor lower P adsorption, increasing the available P content in soil solution (Pavinato & Rosolem, 2008). 

When P is added to soil, it tends to accumulate at the surface layers, as it has great affinity with the soil colloids, 
especially with Fe and Al oxides, hydroxides and oxyhydroxides (Rheinheimer & Anghinoni, 2001). Natural P 
contents in soils are typically low. Thus, P added to soil is initially adsorbed to functional groups with an affinity for 
the element. However, after the saturation of these sites, P is adsorbed to the less avid sites and therefore with lower 
binding energy (Barrow et al., 1998). The saturation of the adsorption sites causes P content in the soil solution to 
increase and results in the migration of P to deeper layers of the soil profile (Lourenzi et al., 2013; Gatiboni et al., 
2015).  

High available P contents in soil (especially at surface layers) may cause P to be transferred to water sources. 
This occurs mainly by surface runoff, where soluble P and soil particles containing P are carried by erosion, but also 
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by leaching in the profile (Ceretta et al., 2010b; Lourenzi et al., 2014). Therefore, it is important to understand the 
ability of soils to adsorb P to colloids without increasing P concentrations in soil solution. Applying the equation 
established by Gatiboni et al. (2015) for the composting areas, the ECL-P is 58, 61, 59 and 75 mg P dm-3 for 1C, 2C, 
3C and 4C, respectively. Thus, contents in 1C and 3C at 0-5 cm (Figures 1a, 3c), in 4C up to 10 cm (Figure 1d) and in 
2C at all layers (Figure 1b) were above the ECL-P (range 2), which means that these areas can be sources of 
environmental pollution to waterbodies. This is even more relevant in coastal areas, where the water table is usually 
near the soil surface.  

Several factors influenced the increase in soil P content in the composting areas. Initially, the contact of the 
compost pile with the soil added readily available P and promoted the addition of organic P. With degradation of soil 
organic matter, organic P can be released in readily available forms to the soil (Vinhal-Freitas et al., 2010). 
Furthermore, percolated leachate from compost piles may contain total P contents ranging from 4.0 to 20.0 mg L-1 
(Mullane et al., 2015), adding significant amounts of P to soil. Another important factor for the increase in P contents 
(especially available P) is the increase of pH. As soil pH increases, there is a reduction in pH-dependent positive 
charges. Consequently, there is decreased P adsorption to colloids and increased concentration in soil solution 
(Sparks, 2003). 

 

 
Figure 1: Available phosphorus contents in areas 1C and 1R (a), 2C and 2R (b), 3C and 3R (c), 4C and 4R (d). 

*Significant difference by Student's t-test at 5%; ns: not significant; 1: Range of soil used as a recycling medium for P; 2: Range 
of high environmental risk, P content above ECL-P; dashed line represents the ECL-P of each area. 

 
Soil management in the composting areas also favored P increase. Area 2C had the highest P accumulation of all 

the areas as a result of composting time and because there was no soil scraping in this area. However, soil scraping 
influenced P accumulation. In comparing P contents of the soil layers of the areas, there were higher P contents in 
4C than in 1C and 3C, which are areas with longer composting time and where soil scraping was used. This trend is 

Available P, mg kg-1

0 100 200 300 400 500

De
pt

h, 
cm

0-5

5-10

10-20

20-30

30-40

1C
1R 

0 100 200 300 400 500

De
pt

h, 
cm

0-5

5-10

10-20

20-30

30-40

3C
3R

0 100 200 300 400 500

4C
4R

Available P, mg kg-1

0 25 50 75 100 250 500 750 1000 1250

2C
2R

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ns

2 1

1 1

(a) (b)

(c) (d)

1 2

2 2

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/


Cleiton Junior Ribeiro Lazzari, Vilmar Müller Junior, Lucas Benedet, Rafael da Rosa Couto, Jucinei José Comin, Arcângelo 
Loss, Gustavo Brunetto, Paul Richard Momsen Miller, and Cledimar Rogério Lourenzi 

 

International Journal of Research -GRANTHAALAYAH                                                                                                                                                         7       

found up to a depth of 10 cm, after which the contents stabilized. This means that removing the 0-10 cm layer of 
topsoil along with the pile also removed the soil that retained most of P lost by the pile via leachate. Thus, the layer 
that remains after the removal of the pile had P contents below the ECL-P recommended for this soil. As P is an 
element with low profile mobility, this technique helps prevent uncovered soil (from which the pile was removed) 
from containing P contents that could cause environmental problems.  

Available Cu contents were higher in composting areas than in reference areas, except for 2C, where contents 
were lower than 2R (Figure 2). In the composting areas, we only found the highest available Cu contents at the 
surface layer in 4C (Figure 2d), while the highest contents were found at deeper soil layers in the other areas (Figures 
2a, 2b, 2c). In comparing total Cu, 1C had higher contents than the reference area at all layers, while 3C showed 
higher content only at 0-5 cm. Area 4C had similar content at 0-5 cm and higher content up to 20 cm, while 2C showed 
total Cu contents lower than 2R at all layers (Table 4). Available Zn contents in all composting areas were higher 
than those found in corresponding reference areas (Figure 3). Similar trend occurred for total Zn contents, except 
for 1C, which had lower total Zn contents in the reference area up to 10 cm (Table 5). 

Total Cu values found in all composting areas, except at 20-30 cm in 1C, were lower than those recommended 
by CONAMA Resolution 420 (Brasil, 2009), which indicates prevention values for total Cu contents in soil of 60 mg 
kg-1. This resolution uses USEPA method 3050B to determine existing contents in soil samples. Still, according to the 
same resolution, none of the areas reached the prevention value for Zn, which is 300 mg kg-1 of total Zn in soil. 
Composting did not significantly influence Cu and Zn contents in the study areas, because of the low contents found 
in the compost (Table 3). These contents were lower than those found in other composts in literature (Cravo et al., 
1998; Ayari et al., 2010; Lourenzi et al., 2016). 

 

 
Figure 2: Available Cu contents in 1C and 1R (a), 2C and 2R (b), 3C and 3R (c), 4C and 4R (d). *Significant 

difference by Student's t-test at 5%; ns: not significant 
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Table 4: Total Cu contents in soils of the composting and reference areas. 
Depth, 

cm 
Total Cu, mg kg-1 

1C 1R CV, % 2C 2R CV, % 
0-5 12.1 c1A2 11.2 aA 8.39 15.6 aB 37.7 cA 13.50 

5-10 15.8 bA 8.3 bB 2.21 13.7 aB 55.9 bA 10.35 
10-20 30.3 aA 7.6 bB 6.28 13.5 aB 73.7 aA 5.91 
CV, % 3.51 8.02  10.14 9.12  
Depth, 

cm 
3C 3R CV, % 4C 4R CV, % 

0-5 10.7 aA 6.3 bB 4.66 13.7 cA 5.0 aA 26.47 
5-10 7.8 bA 6.7 bA 9.37 20.7 bA 4.6 aB 23.92 

10-20 6.8 bB 33.7 aA 12.64 29.8 aA 4.3 aB 4.24 
CV, % 13.04 3.85  17.76 16.44  

(1) Means followed by the same lowercase letter in the column show no significant differences by the Tukey test (p <0.05); 
(2) Means followed by the same uppercase in the row do not show significant differences by Student's t-test (p < 0.05). 

  
The presence of Cd and Ni in soils of the study areas was not detected. Total Cr contents in 3C and 4C were 

higher than those found in the reference areas (3R and 4R) at all layers. Cr contents in 1C were higher than in 1R 
starting at a depth of 5 cm, while contents in 2C were lower than those found in 2R (Table 6). All composting areas 
had higher total Pb contents compared to the reference areas at all layers, except for 1C, which presented contents 
lower than the reference area at 0-5 cm (Table 7). 

Total Cr contents in the composting areas were below the prevention value described by CONAMA Resolution 
420 of 2009 (Brazil, 2009), which is 75 mg kg-1. However, total Pb contents in 3C and 4C were higher than the 
recommended prevention values (72 mg kg-1) at all layers, and only at 10-20 cm and 5-10 cm in 1C and 2C, 
respectively. Prevention values indicate the maximum concentration of a given substance in soil in which the soil is 
still capable of carrying out its main functions, such as serving as a natural filter, as a means for food production, and 
maintaining the water and nutrient cycle (Brasil, 2009). 

However, Pb contents found may be a result of other factors related to the material deposited in these areas for 
landfill and not by the compost itself. This is because Pb contents present in the compost produced in these areas 
are usually low (Neto, 2017) in comparison to those found in other composts in literature (Cravo et al., 1998; Ayari 
et al., 2010). Classes for construction waste are established by law (CONAMA, 2002). For instance, classes A (such as 
bricks, blocks, roof tiles) and B (metal, wood, plastic), which can be reused or recycled, are able to release Cr and Pb 
(De Lima et al., 2008). The use of this type of product mixed with clayey soil (as done in this study) may increase the 
amount of metals in soil as a result of the release by metals or other debris found in construction waste. Similarly, 
Baldi et al. (2010) found that there was no significant increase in Cd, Cr, Ni and Pb contents in soil with the application 
of different doses of domestic organic waste compost for five years. 

The contents of these metals in the final compost are low due to the sorting of organic waste from the other 
wastes at source. By legislation, urban solid waste includes both organic fraction (e.g. food waste) and inorganic 
fraction (e.g. mixed dry waste) (Brasil, 2010). Depending on how rigorous sorting at source is, different percentages 
of contaminated wastes may be found in the material used for composting, increasing the contents of Cu, Zn, Cd, Cr, 
Ni, Pb in the final compost (Richard & Woodbury, 1992). In a study with compost samples of six Brazilian capitals 
with different selective collection systems, Cravo et al. (1998) found that Cu and Zn contents in Florianópolis, Rio de 
Janeiro and Brasilia were much lower than those found in the other capitals. The sorting of organic waste at source 
by the residents of Florianópolis began in 1986, and took greater proportions within the city with the 
implementation of the Beija-Flor Project in 1987. The low contents of heavy metals found by Cravo et al. (1998) 
prove the effectiveness of sorting organic waste at source. 
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Figure 3: Available Zinc content in 1C and 1R (a), 2C and 2R (b), 3C and 3R (c), 4C and 4R (d). *Significant 

difference by Student's t-test at 5%; ns: not significant. 
 

Table 5: Total Zn content in soils of the composting and reference areas. 
Depth, 

Cm 
Total Zn, mg kg-1 

1C 1R CV, % 2C 2R CV, % 
0-5 13.4 b1B2 17.9 aA 11.14 38.9 aA 17.7 aB 16.83 

5-10 9.6 cB 15.1 bA 5.99 33.6 aA 18.0 aB 6.86 
10-20 16.6 aA 13.1 bB 3.47 17.9 bA 17.9 aA 5.56 
CV, % 6.53 10.19  15.15 4.14  

Depth, cm 3C 3R CV, % 4C 4R CV, % 
0-5 90.7 aA 38.4 aB 1.37 38.9 aA 15.1 bB 2.88 

5-10 55.6 cA 34.6 bB 6.13 32.1 bA 20.3 aB 6.48 
10-20 77.7 bA 33.7 bB 2.25 32.1 bA 12.5 bB 8.16 
CV, % 4.96 4.38  5.97 12.51  

(1) Means followed by the same lowercase letter in the column show no significant differences by the Tukey test (p < 0.05); 
(2) Means followed by the same uppercase letter in the row do not show significant differences by Student's t-test (p < 0.05). 

  
Table 6: Total Cr contents in soils of the composting and reference areas. 

Depth, 
cm 

Total Cr, mg kg-1 
1C 1R CV, % 2C 2R CV, % 

0-5 0.0 c1B2 6.3 aA 0 24.7 aB 69.7 cA 3.84 
5-10 8.5 bA 5.1 aA 13.03 16.2 bB 124.1 bA 11.40 

10-20 17.7 aA 0.0 bB 6.80 11.1 cB 176.6 aA 5.72 
CV, % 10.82 42.24  7.25 1.89  
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Depth, cm 3C 3R CV, % 4C 4R CV, % 
0-5 13.8 bA 15.01 cB 18.17 35.3 aA 6.7 cB 7.64 

5-10 20.1 aA 4.3 bB 13.11 38.6 aA 10.6 bB 3.16 
10-20 8.20 cA 6.8 aA 28.06 37.0 aA 12.6 aB 3.52 
CV, % 14.27 16.64  5.06 6.17  

(1) Means followed by the same lowercase letter in the column show no significant differences by the Tukey test (p < 0.05); 
(2) Means followed by the same uppercase letter in the row do not show significant differences by Student's t-test (p < 0.05). 

  
Table 7: Total soil Pb contents in soils of the composting and reference areas. 

Depth, 
cm 

Total Pb, mg kg-1 
1C 1R CV, % 2C 2R CV, % 

0-5 15.0 c1B2 81.5 aA 14.48 55.7 aA 10.8 cB 27.26 
5-10 71.3 bA 60.7 bB 8.77 77.6 aA 19.7 bB 0.51 

10-20 82.6 aA 45.0 bB 6.36 63.6 aA 37.8 aB 9.36 
CV, % 3.01 13.49  14.36 4.96  

Depth, cm 3C 3R CV, % 4C 4R CV, % 
0-5 143.0 aA 62.7 aB 11.93 267.8 aA 88.77 bB 3.74 

5-10 89.3 bA 68.0 aB 1.51 220.6 bA 175.2 aA 10.77 
10-20 142.0 aA 66.1 aB 0.89 193.2 cA 79.5 bB 5.73 
CV, % 8.28 12.08  3.27 3.73  

(1) Means followed by the same lowercase letter in the column show no significant differences by the Tukey test (p < 0.05); 
(2) Means followed by the same uppercase letter in the row do not show significant differences by Student's t-test (p < 0.05). 

  
Principal component analysis grouped the variables into 5 components, which explain 97.19% of the variances 

(Table 8). PC1 explains 36.64% of the variances and consists of variables aCu5, aCu10, aCu20, aCu40, tCu5, tCu10, 
tCu20, tPb5, tPb10, tCr5, tCr10 and tCr20, with highly significant correlations, as all scores were ≥ 0.5 (Coelho, 2003). 
PC2 explains 23.86% of the variables and, together with CP1, explains 60.5%. This component consists of variables 
aP5, aP10, aP20, aP30, aP40, aCu5, aCu10, aZn10 and aZn20. PC3, PC4 and PC5 explain 18.53, 13.64 and 4.52% of 
the variances, respectively. PC3 is composed of variables aP5, aP10, aZn10, aZn20, aZn30, Zn40, tZn5 and tZn20, 
while PC4 is composed of aZn5, tPb5, tPb10, tPb20 and tCr5, and CP5 is composed of aCu30.  

Through the ordering diagram constructed by PCA (Figure 4), it is possible to notice the formation of 3 distinct 
groups. One of which is composed by area 2C (related to variables aP), another consists of area 2R (related to 
variables aCu, tCu and tCr), and the other areas form a third distinct group (Figure 4). Thus, area 2C stood out from 
the others due to the high contents of available P, indicating that the area with the longest composting time without 
soil scraping differed from the other areas. The largest group consisting of areas 1C, 1R, 3C, 3R, 4C and 4R were 
similar in terms of all the variables assessed in the study. This indicates that the composting time of these areas 
combined with the use or not of the scraping process did not promote significant differences in the variables. This 
analysis shows that long-term composting in the same area without scraping the topsoil is more likely to accumulate 
high P contents in soil, increasing the chances of environmental problems. The metals assessed in this study, 
regardless of the composting time or the use of soil scraping, did not increase to levels considered problematic for 
the environment.  
 

Table 8: Principal component analysis (PCA) of the variables assessed in soil of the composting and reference 
areas. 

Variance Component CP1 CP2 CP3 CP4 CP5 
Eigenvalue 9.89 6.44 5.00 3.68 1.22 

Variability (%) 36.64 23.86 18.52 13.64 4.52 
% accumulated 36.64 60.50 79.03 92.67 97.19 

Variable Correlation with principal components 
aP51 -0.31 0.78* -0.52* -0.00 0.09 
aP10 -0.29 0.76* -0.54* -0.12 -0.06 
aP20 -0.28 0.78* -0.45 -0.27 -0.09 
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aP30 -0.35 0.82* -0.29 -0.30 -0.06 
aP40 -0.36 0.78* -0.31 -0.38 -0.00 
aCu5 0.66* 0.63* 0.26 0.17 -0.01 

aCu10 0.79* 0.60* -0.04 -0.05 0.05 
aCu20 0.91* 0.20 0.18 -0.10 0.27 
aCu30 0.37 0.20 0.45 -0.49 0.59* 
aCu40 0.89* 0.09 0.24 -0.18 0.28 
aZn5 -0.29 0.43 -0.38 0.67* 0.29 

aZn10 -0.30 0.68* -0.57* 0.23 0.21 
aZn20 -0.39 0.55* 0.69* -0.19 0.05 
aZn30 -0.35 0.47 0.77* -0.13 0.07 
aZn40 -0.32 0.43 0.77* -0.20 0.12 
tCu5 0.87* 0.41 0.01 0.16 -0.09 

tCu10 0.91* 0.28 -0.00 0.27 -0.02 
tCu20 0.90* 0.08 0.00 0.22 0.02 
tZn5 -0.48 0.45 0.66* 0.19 -0.21 

tZn10 -0.51* 0.43 0.49 0.28 -0.37 
tZn20 -0.37 0.28 0.82* 0.22 -0.12 
tPb5 -0.51* 0.01 0.10 0.82* 0.12 

tPb10 -0.54* -0.24 -0.23 0.65* 0.22 
tPb20 -0.46 0.12 0.27 0.72* 0.39 
tCr5 0.71* 0.42 -0.05 0.50* -0.21 

tCr10 0.85* 0.25 0.08 0.37 -0.18 
tCr20 0.92* 0.16 0.04 0.28 -0.15 

*Variables with higher factor loadings (scores) selected within each component. The criteria for classification were: 
absolute value <0.30, considered slightly significant; 0.30 to 0.49, moderately significant; and ≥0.50, highly significant according 
to Coelho (2003). aP: available P; aCu: available Cu; tCu: Total Cu; aZn: available Zn; tZn: Total Zn; tCr: Total Cr; tPb: Total Pb. 1 
Numbers after the abbreviation refer to depths. 

 

 
Figure 4: Ordering diagram produced by principal component analysis of the data. aP: available P; aCu: available 

Cu; tCu: Total Cu; aZn: available Zn; tZn: Total Zn; tCr: Total Cr; tPb: Total Pb; C: composting area, R: reference area. 
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4. CONCLUSION 
 
The production of small-scale organic compost directly on the soil without weather protection and without soil 

sealing promoted changes in available P, Cu and Zn contents.  
All the areas assessed in this study had P contents above the ECL-P in at least one of the layers, which indicates 

that composting can increase soil P above environmentally sound levels. 
The presence of Cu, Zn, Cd, Cr, Ni and Pb did not represent an environmental liability in the composting areas. 

As the compost did not have high contents of these metals, soil contents were kept below the limits recommended 
by law. 
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