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Abstract 

This paper projects Drag & Aversion Particle Swarm Optimization (DAPSO) algorithm is 

applied to solve optimal reactive power problem. In DAPSO the idea of decreasing and 

increasing diversity operators used to control the population into the basic Particle Swarm 

Optimization (PSO) model. The modified model uses a diversity measure to have the algorithm 

alternate between exploring and exploiting behavior. The results show that both Drag & 

Aversion Particle Swarm Optimization (DAPSO) prevents premature convergence to enhanced 

level but still keeps a rapid convergence. Proposed Drag & Aversion Particle Swarm 

Optimization (DAPSO) has been tested in standard IEEE 118 & practical 191 bus test systems. 

Real power loss has been considerably reduced and voltage profiles are within the limits. 
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1. Introduction

The main objective of optimal reactive power problem is to minimize the real power loss and bus 

voltage deviation. Various numerical methods like the gradient method [1-2], Newton method 

[3] and linear programming [4-7] have been adopted to solve the optimal reactive power dispatch

problem. Both the gradient and Newton methods have the complexity in managing inequality

constraints. If linear programming is applied then the input- output function has to be uttered as a

set of linear functions which mostly lead to loss of accuracy.  The problem of voltage stability

and collapse play a major role in power system planning and operation [8]. Evolutionary

algorithms such as genetic algorithm have been already proposed to solve the reactive power

flow problem [9-11]. Evolutionary algorithm is a heuristic approach used for minimization

problems by utilizing nonlinear and non-differentiable continuous space functions. In [12],

Hybrid differential evolution algorithm is proposed to improve the voltage stability index. In [13]

Biogeography Based algorithm is projected to solve the reactive power dispatch problem. In
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[14], a fuzzy based method is used to solve the optimal reactive power scheduling method. In 

[15], an improved evolutionary programming is used to solve the optimal reactive power 

dispatch problem. In [16], the optimal reactive power flow problem is solved by integrating a 

genetic algorithm with a nonlinear interior point method. In [17], a pattern algorithm is used to 

solve ac-dc optimal reactive power flow model with the generator capability limits. In [18], F. 

Capitanescu proposes a two-step approach to evaluate Reactive power reserves with respect to 

operating constraints and voltage stability. In [19], a programming based approach is used to 

solve the optimal reactive power dispatch problem. In [20], A.Kargarian et al present a 

probabilistic algorithm for optimal reactive power provision in hybrid electricity markets with 

uncertain loads. This paper projects Drag & Aversion Particle Swarm Optimization (DAPSO) 

algorithm is applied to solve optimal reactive power problem.  Newly R. Ursem has suggested a 

model called the Diversity-Guided Evolutionary Algorithm (DGEA) [21]. He redefines the 

traditional mutation operator, the Gaussian mutation, to be a directed mutation instead. The 

important issue is that this directed mutation, in general, increases the diversity, whereas normal 

Gaussian mutation is not likely to do this, because it simply adds Arbitrary noise from some 

distribution with a mean of zero, normally N(0; 2
). Consequently, the DGEA applies diversity-

decreasing operators (selection, recombination) and diversity-increasing operators (mutation) to 

alternate between two modes based upon a distance-to-average-point measure. The performance 

of the DGEA clearly shows its potential in multi-modal optimization. As [21] rightfully 

pinpoints, the diversity measure are traditionally used to analyze the evolutionary algorithms 

rather than guide them. We are great believers of adaptive controlling; that measuring and using 

different properties of the swarm/population while running, adds significant potential to the 

algorithm. We have therefore adopted the idea from Ursem with the decreasing and increasing 

diversity operators used to control the population into the basic PSO model. We find, it is a 

natural modification of the PSO [22-15], and the idea behind it is surprisingly simple. The 

modified model uses a diversity measure to have the algorithm alternate between exploring and 

exploiting behavior. We introduce two phases’ Drag and Aversion. By measuring the diversity 

we let the swarm alternate between these phases. As long as the diversity is above a certain 

threshold dlow the particles attract each other. When the diversity declines below dlow the particles 

simply switch and start to repel each other until the threshold dhigh is met. With this simple 

scheme we obtain our modified model, which we have chosen to call the ARPSO model – the 

attractive and repulsive PSO. Proposed Drag & Aversion Particle Swarm Optimization (DAPSO) 

has been tested in standard IEEE 118 & practical 191 bus test systems. Real power loss has been 

considerably reduced and voltage profiles are within the limits. 

 

2. Problem formulation 

 

The objective of the reactive power optimization problem is to minimize the active power loss in 

the transmission Network as well as to improve the voltage profile of the system. Adjusting 

reactive power controllers like Generator bus voltages, reactive Power of VAR sources and 

transformer taps performs reactive Power scheduling. 

Min PL =  ),,(
1

YXP
NB

i

i


                                      (1) 

Subject to 

 

a) The control vector constraints 
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max

X   X   
min

X                                                      (2) 

 

b)  The dependent vector constraints  

                                                                                   
max

Y   Y   minY                                          (3) 

 

c)  The power flow constraint 

 

F(X, Y,)  = 0                                                   (4) 

 
Where 

X = [VG, T, QC]                                                  (5) 

 
Y = [Qg, VL, I]                                                  (6) 

 

NB - Number of buses in the system. 

 - Vector of bus phase angles 

P
i
 - Real Power injection into the i

th
bus 

VG - Vector of Generator Voltage Magnitudes 

T - Vector of Tap settings of on load Transformer Tap changer. 

QC - Vector of reactive Power of switchable VAR sources. 

VL - Vector of load bus Voltage magnitude. 

I - Vector of current in the lines. 

PL - Vector of current in the lines. 
 

3. Basic Particle Swarm Optimization 

  

The basic Particle Swarm Optimization (PSO) model consists of a swarm of particles moving in 

an n-dimensional, real valued search space of possible problem solutions. For the search space, 

in general, a certain quality measure, the fitness, is defined making it possible for particles to 

compare different problem solutions. Every particle has a position vector x and a velocity vector 

v. Moreover, each particle contains a small memory storing its own best position seen so far p 

and a global best position g obtained through communication with its fellow neighbor particles. 

This information flow is obtained by defining a neighborhood topology on the swarm telling 

particles about immediate neighbors. 

 

The intuition behind the PSO model is that by letting information about good solutions spread 

out through the swarm, the particles will tend to move to good areas in the search space. At each 

time step t the velocity is updated and the particle is moved to a new position. This new position 

is simply calculated as the sum of the previous position and the new velocity: 

 

)1()()1(  ttxtx 


                                                                                                                       (7) 

 

The update of the velocity from the previous velocity to the new velocity is, as implemented in 

this paper, determined by: 

 

http://www.granthaalayah.com/


[Lenin *, Vol.5 (Iss.11): November, 2017]                                               ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

DOI: 10.5281/zenodo.1069425 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [171] 

 

)),()(())(()(.)1( 21 txtgtptt


                                                                        (8) 

 

Where 1 and 2 are real numbers chosen uniformly and at Arbitrary in a given interval, usually 

[0,2].  These values determine the significance of )(  )( tgandtp


respectively.  The parameter w is 

the inertia weight and controls the magnitude of the old velocity )(t


in the calculation of the new 

velocity 2).1( t


 

 

4. Drag & Aversion Particle Swarm Optimization (DAPSO) 

 

We define the Drag phase merely as the basic PSO algorithm. The particles will then attract each 

other, since in general they attract each other in the basic PSO algorithm because of the 

information flow of good solutions between particles. We define the second phase aversion, by 

“inverting” the velocity-update formula of the particles:  

 

)).()(())()(()(.)1( 21 txtgtxtptt


                                                                       (9) 

 

In the Aversion phase the individual particle is no longer attracted to, but instead repelled by the 

best known particle position vector g(t) and its own previous best position vector p(t).  

 

In the Drag phase the swarm is contracting, and consequently the diversity decreases. When the 

diversity drops below a lower bound, dlow, we switch to the Aversion phase, in which the swarm 

expands due to the above inverted update-velocity formula (9). Finally, when a diversity of dhigh 

is reached, we switch back to the Drag phase. The result of this is an algorithm that alternates 

between phases of exploiting and exploring – Drag and aversion – low diversity and high 

diversity. The Drag & Aversion Particle Swarm Optimization (DAPSO), algorithm is shown in 

Fig. 1 and 2. 

 

 

Initialization ( ); 

While not done do 

Put Direction ( );  //new! 

Update Velocity ( ); 

New-fangled Position ( ); 

Allocate Fitness ( ); 

Compute Diversity ( ); // new! 

Figure 1: Drag & Aversion Particle Swarm Optimization algorithm 

 

Function Set Direction 

if (dir > 0 && diversity <dLow) dir = -1; 

if (dir > 0 && diversity <dHigh) dir = 1; 

Figure 2: Set Direction 

 

The first of the two new functions, setDirection determines which phase the algorithm is 

currently in, simply by setting a sign-variable, dir, either to 1 or -1 depending on the diversity. In 

the second function, calculateDiversity, the diversity of the swarm (in the pseudo-code stored in 

the variable “diversity”), is set according to the diversity-measure: 
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where S is the Swarm, [S] is the swarmsize, [L] is the length of longest the diagonal in the search 

space, N is the dimensionality of the problem, pij is the j’
th

 value of the I’
th

 particle and pj is the 

j’
th

 value of the average point p.  Note that this diversity measure is independent of swarmsize, 

the dimensionality of the problem as well as the search range in each dimension. 

 

 

Finally, the velocity-update formula, eqn. (9) is changed by multiplying the sign-variable 

direction to the two last terms in it. This decides directly whether the particles attract or repel 

each other: 

 

))).()(())()((()(.)1( 21 txtgtxtpdirtt


                                                                    (11) 

 

4.1. Drag & Aversion Particle Swarm Optimization Algorithm for Reactive Power 

problem  

 

The proposed Reactive Power Optimization algorithm using the ARPSO can be expressed as 

follows: 

 

Step 1. Initial searching points and velocities of agents are generated. 

Step 2. Ploss to the searching points for each agent is calculated using the load flow calculation. 

If the constraints are violated, the penalty is added to the loss (evaluation value of agent). 

 

The fitness function of each particle is calculated as: 

          N1,2.., n ;    QP  f n

NL

1

nlim,

jL,

NG

1j

nlim,

jG, L
n

n  


  V
j

                    (12) 

,  = penalty factors 

 P
n

L = total real power losses of the n
-th

 particle 
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and 

                                      
  otherwise                      0

  V V if  V -  
 

max L, 
n

jL, , maxL,

n

jL,nlim, 

jL,








V

V                               (14) 

Step 3. Pbest is set to each initial searching point. The initial best evaluated value (loss with 

penalty) among pbests is set to gbest.  

Step 4. New velocities are calculated using eqn. (7).  

Step 5. Update the velocity from previous velocity to the new velocity using eqn. (8).  

Step 6. To new function applied. 

i. setdirection  

ii. Calculate Diversity to control swarm. 
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Step 7.Ploss to the new searching points and the evaluation values are calculated.  

Step 8. If the evaluation value of each agent is better than the previous pbest, the value is set to 

pbest. If the best pbest is better than gbest, the value is set to gbest. All of gbests are stored as 

candidates for the final control strategy.  

Step 9. If the iteration number reaches the maximum iteration number, then stop. Otherwise, go 

to Step 4. If the voltage and power flow constraints are violated, the absolute violated value from 

the maximum and minimum boundaries is largely weighted and added to the objective function 

(1) as a penalty term. The maximum iteration number should be determined by pre-simulation. 

As mentioned below, PSO requires less than 100 iterations even for large-scale problems.  

 

5. Simulation Results 

 
At first Drag & Aversion Particle Swarm Optimization (DAPSO) algorithm , has been tested in 

standard IEEE 118-bus test system [26].The system has 54 generator buses, 64 load buses, 186 

branches and 9 of them are with the tap setting transformers. The limits of voltage on generator 

buses are 0.95 -1.1 per-unit., and on load buses are 0.95 -1.05 per-unit. The limit of transformer 

rate is 0.9 -1.1, with the changes step of 0.025. The limitations of reactive power source are listed 

in Table 1, with the change in step of 0.01. 

 

Table 1: Limitation of reactive power sources 

BUS 5 34 37 44 45 46 48 

QCMAX 0 14 0 10 10 10 15 

QCMIN -40 0 -25 0 0 0 0 

BUS 74 79 82 83 105 107 110 

QCMAX 12 20 20 10 20 6 6 

QCMIN 0 0 0 0 0 0 0 

 

The statistical comparison results of 50 trial runs have been list in Table 2 and the results clearly 

show the better performance of proposed Drag & Aversion Particle Swarm Optimization 

(DAPSO) approach. 

 

Table 2: Comparison results 

Active power loss (p.u) BBO 

[27] 

ILSBBO/ 

strategy1 

[27] 

ILSBBO/ 

strategy1 

[27] 

Proposed 

DAPSO 

Min 128.77 126.98 124.78 116.98 

Max 132.64 137.34 132.39 121.84 

Average  130.21 130.37 129.22 119.36 

 

Then the Drag & Aversion Particle Swarm Optimization (DAPSO) algorithm has been tested in 

practical 191 test system and the following results have been obtained. In Practical 191 test bus 

system – Number of Generators = 20, Number of lines = 200, Number of buses = 191 Number of 

transmission lines = 55. Table 3 shows the optimal control values of practical 191 test system 

obtained by DAPSO method. And table 4 shows the results about the value of the real power loss 

by obtained by Drag & Aversion Particle Swarm Optimization (DAPSO). 

 

http://www.granthaalayah.com/


[Lenin *, Vol.5 (Iss.11): November, 2017]                                               ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

DOI: 10.5281/zenodo.1069425 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [174] 

 

Table 3. Optimal Control values of Practical 191 utility (Indian) system by DAPSO method 

VG1 1.100  VG 11 0.900 

VG 2 0.720 VG 12 1.000 

VG 3 1.010 VG 13 1.000 

VG 4 1.010 VG 14 0.900 

VG 5 1.100 VG 15 1.000 

VG 6 1.100 VG 16 1.000 

VG 7 1.100 VG 17 0.900 

VG 8 1.010 VG 18 1.000 

VG 9 1.100 VG 19 1.100 

VG 10 1.010 VG 20 1.100 

                               

T1 1.000  T21 0.900  T41 0.900 

T2 1.000 T22 0.900 T42 0.900 

T3 1.000 T23 0.900 T43 0.910 

T4 1.100 T24 0.900 T44 0.910 

T5 1.000 T25 0.900 T45 0.910 

T6 1.000 T26 1.000 T46 0.900 

T7 1.000 T27 0.900 T47 0.910 

T8 1.010 T28 0.900 T48 1.000 

T9 1.000 T29 1.010 T49 0.900 

T10 1.000 T30 0.900 T50 0.900 

T11 0.900 T31 0.900 T51 0.900 

T12 1.000 T32 0.900 T52 0.900 

T13 1.010 T33 1.010 T53 1.000 

T14 1.010 T34 0.900 T54 0.900 

T15 1.010 T35 0.900 T55 0.900 

T19 1.020 T39 0.900   

T20 1.010 T40 0.900   

 

Table 4: Optimum real power loss values obtained for practical 191 utility (Indian) system by 

DAPSO method. 

Real power Loss (MW) DAPSO 

Min 145.102 

Max 149.114 

Average 147.786 

 
6. Conclusion 

  

In this paper Drag & Aversion Particle Swarm Optimization (DAPSO) algorithm has been 

successfully solved the Reactive power optimization problem. In DAPSO the idea of decreasing 

and increasing diversity operators used to control the population into the basic Particle Swarm 

Optimization (PSO) model. The modified model uses a diversity measure to have the algorithm 
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alternate between exploring and exploiting behavior. The results show that both Drag & 

Aversion Particle Swarm Optimization (DAPSO) prevents premature convergence to 

extraordinary level but still keeps a quick convergence. Proposed Drag & Aversion Particle 

Swarm Optimization (DAPSO) algorithm has been tested in standard IEEE 118 & practical 191 

bus test systems. Real power loss has been considerably reduced and voltage profiles are within 

the limits.   
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