
[Deokar et al, Vol.3(Iss.3):March,2015] ISSN- 2350-0530(O) ISSN- 2394-3629(P)

DOI: https://doi.org/10.29121/granthaalayah.v3.i3.2015.3031

Science

INTERNATIONAL JOURNAL of
RESEARCH –GRANTHAALAYAH
A knowledge Repository

Http://www.granthaalayah.com©International Journal of Research -GRANTHAALAYAH [51-61]

SURVEY ON DISTRIBUTED CANNY EDGE DETECTOR WITH FPGA
Poonam S. Deokar*1, Anagha P. Khedkar2
*1 M.E Student, MCEORC, Nashik, INDIA
2 MCEORC, Nashik, INDIA

*Correspondence Author: poonamdeokar19@gmail.com

Abstract:

The Edge can be defined as discontinuities in image intensity from one pixel to another.

Modem image processing applications demonstrate an increasing demand for computational

power and memories space. Typically, edge detection algorithms are implemented using

software. With advances in Very Large Scale Integration (VLSI) technology, their hardware

implementation has become an attractive alternative, especially for real-time applications. The

Canny algorithm computes the higher and lower thresholds for edge detection based on the

entire image statistics, which prevents the processing of blocks independent of each other.

Direct implementation of the canny algorithm has high latency and cannot be employed in

real-time applications. To overcome these, an adaptive threshold selection algorithm may be

used, which computes the high and low threshold for each block based on the type of block

and the local distribution of pixel gradients in the block. Distributed Canny Edge Detection

using FPGA reduces the latency significantly; also this allows the canny edge detector to be

pipelined very easily. The canny edge detection technique is discussed in this paper.

Keywords:

FPGA, Canny Edge Detector, Image, Threshold, Latency.

Cite This Article: Poonam S. Deokar and Anagha P. Khedkar, “Survey on Distributed Canny

Edge Detector With FPGA.” International Journal of Research – Granthaalayah, Vol. 3,

No. 3(2015): 51-61. DOI: https://doi.org/10.29121/granthaalayah.v3.i3.2015.3031.

1. INTRODUCTION

First step in many computer vision algorithms is the Edge detection. It is used to identify

changes in luminosity of the image, changes in the intensity due to changes in scene structure.

Using software, Edge detection algorithms are implemented, and their hardware implementation

is possible with Very Large Scale Integration (VLSI) technology, for real-time applications [1].

The Canny edge detector has remained a standard for last few years and has best performance.

Canny algorithm performs hysteresis thresholding which requires computing high and low

thresholds based on the entire image statistics and thus it has superior performance.

Unfortunately, this feature makes the Canny edge detection algorithm not only more

computationally complex as compared to other edge detection algorithms, such as the Roberts

and Sobel algorithms, but also necessitates additional pre-processing computations to be done on

the entire image. As a result, a direct implementation of the canny algorithm has high latency and

cannot be employed in real-time applications [2].

http://www.granthaalayah.com/
https://crossmark.crossref.org/dialog/?doi=10.29121/granthaalayah.v3.i3.2015.3031&domain=pdf&date_stamp=2015-03-31

[Deokar et al, Vol.3(Iss.3):March,2015] ISSN- 2350-0530(O) ISSN- 2394-3629(P)

Science

INTERNATIONAL JOURNAL of
RESEARCH –GRANTHAALAYAH
A knowledge Repository

Http://www.granthaalayah.com©International Journal of Research -GRANTHAALAYAH [51-61]

The original Canny algorithm computes the higher and lower thresholds for edge detection based

on the entire image statistics, which prevents the processing of blocks independent of each other

[3].

As canny algorithm depends on a correct setting of the threshold,it miss some edges or detect

some spurious edges when the threshold is not set a proper value. Thus, it is not suitable for

mobile robot vision system in which all of the operation should be done by the robot controller

and the environment changes constantly [5].

To overcome these shortcomings of traditional canny algorithm, an adaptive threshold selection

algorithm is proposed in [2] which compute the high and low threshold for each block based on

the type of block and the local distribution of pixel gradients in the block. Each block can be

processed simultaneously, thus reducing the latency significantly. Furthermore, this allows the

block-based canny edge detector to be pipelined very easily with existing block-based codec,

thereby improving the timing performance of image/video processing systems. Most importantly,

conducted conformance evaluations and subjective tests show that, compared with the frame-

based canny edge detector, the proposed algorithm yields better edge detection results for both

clean and noisy images.

2. TYPES OF EDGE DETECTION

The most commonly used method for edge detection is to calculate the differentiation of an

image. The first-order derivatives in an image are computed using the gradient, and the second-

order derivatives are obtained using the Laplacian. However, the majority of different methods

may be grouped into two categories:

GRADIENT: The gradient method detects the edges by looking for the maximum and minimum

in the first derivative of the image.

Laplacian: The Laplacian method searches for zero crossings in the second derivative of the

image to find edges. An edge has the one-dimensional shape of a ramp and calculating the

derivative of the image can highlight its location.

2.1.GRADIENT METHOD

These are also known as 1st derivative Method.

 (1)

An important quantity in edge detection is the magnitude of this vector, denoted ∇f. Where,

http://www.granthaalayah.com/

[Deokar et al, Vol.3(Iss.3):March,2015] ISSN- 2350-0530(O) ISSN- 2394-3629(P)

Science

INTERNATIONAL JOURNAL of
RESEARCH –GRANTHAALAYAH
A knowledge Repository

Http://www.granthaalayah.com©International Journal of Research -GRANTHAALAYAH [51-61]

 (2)

Another important quantity is the direction of the gradient vector. That is,

1angle of tan
y

x

G

G

  
   

 
f

 (3)

Computation of the gradient of an image is based on obtaining the partial derivatives of ∂f/∂x and

∂f/∂y at every pixel location.

1 Sobel Edge Detection- The operator consists of a pair of 3×3 convolution kernels. One kernel

is simply the other rotated by 90°.

2 Prewitt Edge Detection- Prewitt operator is similar to the Sobel operator and is used for

detecting vertical and horizontal edges in images.

3 Roberts Edge Detection- The Roberts Cross operator performs a simple, quick to compute, 2-

D spatial gradient measurement on an image.

2.2.LAPLACIAN METHOD

It is also called as 2nd derivative Method. The Laplacian of a 2-D function f (x, y) is a second-

order derivative defined as

(4)

There are two digital approximations to the Laplacian for a 3×3 region:

(5)

 (6)

2.2.1. LAPLACIAN OF GAUSSIAN

The Laplacian is often applied to an image that has first been smoothed with something

approximating a Gaussian Smoothing filter in order to reduce its sensitivity to noise. It is a 2-D

isotropic measure of the 2nd spatial derivative of an image. The Laplacian of an image highlights

regions of rapid intensity change and is therefore often used for edge detection. This operator

normally takes a single gray level image as input and produces another gray level image as

output.

The Laplacian L(x,y) of an image with pixel intensity values I(x,y) is given by:

 (7)

http://www.granthaalayah.com/
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

[Deokar et al, Vol.3(Iss.3):March,2015] ISSN- 2350-0530(O) ISSN- 2394-3629(P)

Science

INTERNATIONAL JOURNAL of
RESEARCH –GRANTHAALAYAH
A knowledge Repository

Http://www.granthaalayah.com©International Journal of Research -GRANTHAALAYAH [51-61]

Since the input image is represented as a set of discrete pixels, we have to find a discrete

convolution kernel that can approximate the second derivatives in the definition of the Laplacian.

Three commonly used small kernels are shown in Figure.

Figure 1: Three Commonly Used Discrete Approximations to the Laplacian Filter

Because these kernels are approximating a second derivative measurement on the image, they are

very sensitive to noise. To counter this, the image is often Gaussian Smoothed before applying

the Laplacian filter. This pre-processing step reduces the high frequency noise components prior

to the differentiation step.

In fact, since the convolution operation is associative, we can convolve the Gaussian smoothing

filter with the Laplacian filter first of all, and then convolve this hybrid filter with the image to

achieve the required result. Doing things this way has two advantages:

Since both the Gaussian and the Laplacian kernels are usually much smaller than the image, this

method usually requires far fewer arithmetic operations.

The LoG (`Laplacian of Gaussian') kernel can be precalculated in advance so only one

convolution needs to be performed at run-time on the image.

The 2-D LoG function centered on zero and with Gaussian standard deviation has the form:

 (8)

As the Gaussian is made increasingly narrow, the LoG kernel becomes the same as the simple

Laplacian kernels. This is because smoothing with a very narrow Gaussian (< 0.5 pixels) on a

discrete grid has no effect. Hence on a discrete grid, the simple Laplacian can be seen as a

limiting case of the LoG for narrow Gaussians.

2.3.CANNY EDGE DETECTION

The block diagram of the canny edge detection algorithm is shown in Fig. The original canny

algorithm [6] consists of the following steps:

1. Smoothing the input image by Gaussian mask.

2. Calculating the horizontal gradient Gx and vertical gradient Gy at each pixel location by

convolving with gradient masks.

3. Computing the gradient magnitude G and direction θG at each pixel location.

4. Applying Non-Maximal Suppression (NMS) to thin edges.

http://www.granthaalayah.com/

[Deokar et al, Vol.3(Iss.3):March,2015] ISSN- 2350-0530(O) ISSN- 2394-3629(P)

Science

INTERNATIONAL JOURNAL of
RESEARCH –GRANTHAALAYAH
A knowledge Repository

Http://www.granthaalayah.com©International Journal of Research -GRANTHAALAYAH [51-61]

5. Computing high and low thresholds based on the histogram of the gradient magnitude for

the entire image.

6. Performing hysteresis Thresholding.

7. Applying morphological thinning on the resulting edge map.

Figure 2: Block Diagram of the Canny Edge Detection Algorithm

1. Smoothing – Smoothing of the image is achieved by Gaussian convolutions. Blurring of the

image to remove noise.

2. Gradients calculation- It is performed using Finite-impulse-Response (FIR) gradient masks

designed to approximate 2D sample version of partial derivative of Gaussian Function. The

size of gradient mask used by canny edge detector is function of standard deviation.

3. Calculation of Gx and Gy- The actual images are always discrete; we define the direction as

vertical, horizontal, left-diagonal and right-diagonal of the 3x3 adjacent window of current

pixel.

The first-derivative of each direction is then calculated by

 E = ({ -1,1})3 X 3 X H(i,j)3 X 3 (9)

Using a {-1,+1} operator to the adjacent pixels along each direction, we get EV, EH, EDL and

EDR, the results of equation in vertical, horizontal, left-diagonal and right-diagonal directions.

The magnitude of gradient of current pixel is the maximum of |EH|, |EV|, |EDR|, |EDL|, and the

direction of gradient is one of the four directions corresponding to the maximum of |EH|, |EV|,

|EDR|, |EDL|.

 |grads (H(I,j)) | =max { |EH|, |EV|, |EDR|, |EDL| } (10)

Θ = Arg (max { |EH|, |EV|, |EDR|, |EDL| }) (11)

Since 3x3 convolutions are used to calculate the gradients, neighboring 8 pixels are required.

FIFO buffers are employed to store the output pixels.

4. Non-Maximal Suppression - Once the direction of the gradient is known, the pixel that has no

local maximum gradient magnitude is eliminated. If the pixel’s gradient direction is one of 8

http://www.granthaalayah.com/

[Deokar et al, Vol.3(Iss.3):March,2015] ISSN- 2350-0530(O) ISSN- 2394-3629(P)

Science

INTERNATIONAL JOURNAL of
RESEARCH –GRANTHAALAYAH
A knowledge Repository

Http://www.granthaalayah.com©International Journal of Research -GRANTHAALAYAH [51-61]

possible main directions the gradient magnitude of this pixel is compared with two of its

immediate neighbors along the gradient direction and the gradient magnitude is set to zero if it

does not correspond to a local maximum. ng gradients.

5. Threshold Calculation - The high threshold is computed such that a percentage p1 of total

pixel in the image would be classified as Strong edge. The high threshold corresponds to the

point at which value of gradient magnitude is Cumulative distributive function (CDF) equals to

1- p1. The low threshold is calculated as percentage p2 of high threshold.

6. Hysteresis Threshold - If the gradient magnitude of pixel is greater than high threshold then

this pixel is considered as strong edge. If the gradient magnitude of pixel is between high and

low threshold then this pixel is considered as weak edge. Hysteresis is used to determine the

edge map.

2.4.DISTRIBUTED CANNY EDGE DETECTION

The Canny edge detection algorithm operates on the whole image and has a latency that is

proportional to the size of the image. While performing the original canny algorithm at the

block-level would speed up the operations, it would result in loss of significant edges in high-

detailed regions and excessive edges in texture regions. Natural images consist of a mix of

smooth regions, texture regions and high-detailed regions and such a mix of regions may not be

available locally in every block of the entire image. In [6], distributed canny edge detection

algorithm is proposed, which removes the inherent dependency between the various blocks so

that the image can be divided into blocks and each block can be processed in parallel.

In the distributed version of the Canny algorithm, the input image is divided into m × n

overlapping blocks, and the blocks are processed independent of each other. To prevent edge

artifacts and loss of edges at the boundaries, adjacent blocks overlap by (L-1)/2 pixels for L× L

gradient mask. However, for each block, only edges in the central n × n (where n= m-L+1) non-

overlapping region are included in the final edge map. In the proposed algorithm, Steps 1 to 3

and Steps 5 to 7 are the same as in the original canny algorithm except that these are now applied

at the block level. The high and low gradient threshold selection step of the original Canny (Step

4) is modified to enable block-level processing. Analysis of natural images showed that a pixel

with a gradient magnitude of 4 corresponds to a psycho-visually significant edge. Also, a pixel

with a gradient magnitude of 2 and 6 corresponds to blurred edges and very sharp edges,

respectively. The studied threshold selection algorithm was designed based on these observations

and is as shown below:

1) Calculating the horizontal gradient Gxand vertical gradient Gyat each pixel location by

convolving with gradient masks.

2) Computing the gradient magnitude G and direction θGat each pixel location.

3) Applying Non-Maximal Suppression (NMS) to thin edges.

4) Parallel block-level processing without degrading the edge detection performance.

5) Performing hysteresis thresh holding to determine the edge map.

http://www.granthaalayah.com/

[Deokar et al, Vol.3(Iss.3):March,2015] ISSN- 2350-0530(O) ISSN- 2394-3629(P)

Science

INTERNATIONAL JOURNAL of
RESEARCH –GRANTHAALAYAH
A knowledge Repository

Http://www.granthaalayah.com©International Journal of Research -GRANTHAALAYAH [51-61]

Figure 3: Distributed Canny Edge Detection Algorithm Block Diagram.

3. DISTRIBUTED CANNY EDGE ALGORITHM USING FPGA

The Embedded system for implementing the distributed canny edge detection algorithm based on

an FPGA platform. It is composed of several components, including an embedded micro-

controller, a system bus, peripherals & peripheral controllers, external Static RAMs (SRAM) &

memory controllers, and an intellectual property (IP) design for the proposed distributed Canny

detection algorithm. The embedded micro-controller coordinates the transfer of the image data

from the host computer (through the PCIe (or USB) controller, system local bus, and memory

controller) to the SRAM; then from the SRAM to the local memory in the FGPA for processing

and finally storing back to the SRAM. Xilinx and Altera offer extensive libraries of intellectual

property (IP) in the form of embedded micro-controllers and peripherals controller [1].

http://www.granthaalayah.com/

[Deokar et al, Vol.3(Iss.3):March,2015] ISSN- 2350-0530(O) ISSN- 2394-3629(P)

Science

INTERNATIONAL JOURNAL of
RESEARCH –GRANTHAALAYAH
A knowledge Repository

Http://www.granthaalayah.com©International Journal of Research -GRANTHAALAYAH [51-61]

Figure 4: Block Diagram of Embedded System for Distributed Canny Edge Detector

FPGA required to implement distributed canny edge detector algorithm consists of q processing

units (PU) and external dual-port Static RAMs (SRAMs). Each PU consists of p computing

engines (CE), where each CE processes an m×m overlapping image block and generates the

edges of an n×n block, where m = n+L+1 for an L×L gradient mask. The dataflow through this

architecture is as follows. For each PU, the SRAM controller fetches the input data from SRAM

and stores them into the input local memory in the PU. The CEs read this data, process them and

store the edges into the output local memory. Finally, the edges are written back to the SRAM

one output value at a time from the output local memory.

FPGA Architecture consists of following blocks:

3.1. COMPUTING ENGINE (CE)

Each CE processes an m × m overlapping image block and generates the edges of an n × n non-

overlapping block. The computations that take place in CE can be broken down into the

following five units:

1) Block classification.

2) Vertical and horizontal gradient calculation as well as magnitude Calculation.

3) Directional non-maximum suppression.

4) High and low threshold calculation.

5) Thresh holding with hysteresis.

The edge detection computation can start after n m × m overlapping block is stored in CE’s local

memories. In addition, in order to compute the block type, vertical gradient and horizontal

gradient in parallel, the m × m overlapping block is stored in three local memories, marked as

local memory 1, 2 and 3.

http://www.granthaalayah.com/

[Deokar et al, Vol.3(Iss.3):March,2015] ISSN- 2350-0530(O) ISSN- 2394-3629(P)

Science

INTERNATIONAL JOURNAL of
RESEARCH –GRANTHAALAYAH
A knowledge Repository

Http://www.granthaalayah.com©International Journal of Research -GRANTHAALAYAH [51-61]

Figure 5: Block Diagram of the CE (Computing Engine)

3.2.BLOCK CLASSIFICATION

The m×m overlapping block is stored in the CE’s local memory 1 and is used for determining the

block type. The architecture unit consists of two stages. Stage 1 performs pixel classification

while stage 2 performs block classification.

For pixel classification, the local variance of each pixel is utilized. The computation is done

using one adder, two accumulators, two multipliers and one square. Then two counters are used

to get the total number of pixels for each pixel type. The output of counter 1 gives C1, the

number of uniform pixels, while the output of counter 2 gives C2, the number of edge pixels.

The block classification stage is initialized once the C1 and C2 values are available. Outputs are

used as the control signals of MUX 1 and MUX 2 to determine the value of P1. Finally, the P1

value is compared with 0 to produce the enable signal, marked as EN. Outputs are used as the

control signals of MUX 1 and MUX 2 to determine the value of P1. Finally, the P1 value is

compared with 0 to produce the enable signal, marked as EN. If the P1 value is larger then 0,

then EN signal enables gradient calculation, magnitude calculation, directional non-maximum

suppression, high and low threshold calculation and thresholding with hysteresis units.

Otherwise, these units do not need to be activated.

3.3.GRADIENT AND MAGNITUDE

Block classification unit and gradient and magnitude unit are independent of each other so works

in parallel. It consists of three computational part one address and time controller used for

addresses and control signal for computation.

http://www.granthaalayah.com/

[Deokar et al, Vol.3(Iss.3):March,2015] ISSN- 2350-0530(O) ISSN- 2394-3629(P)

Science

INTERNATIONAL JOURNAL of
RESEARCH –GRANTHAALAYAH
A knowledge Repository

Http://www.granthaalayah.com©International Journal of Research -GRANTHAALAYAH [51-61]

For vertical and horizontal gradient calculation input block image is convolved with 2-D

horizontal and vertical gradient masks. These are separable, so 2-D convolution is obtained by

separate 1-D convolution. In FPGA Xilinx FIR IP core is used, which provides highly

parameterizable, area efficient implementation that utilizes the symmetry characteristics of

coefficient.

The result of vertical and horizontal gradient calculations is stored in local memory. With Xilinx

IP core which provides pipeline mode, unsigned fraction format was used. The maximum and

minimum values of magnitude marked as mag_max and mag_min are output of this block. It is

used as a input for threshold calculation unit.

3.4.DIRECTIONAL NON MAXIMAL SUPPRESSION

Horizontal and vertical gradient magnitudes are fetched from local memory and used as input to

NMS unit. It computes gradient direction at each pixel. Gradient magnitudes of gradient

magnitudes of four nearest neighbors along the direction are selected to compute two

intermediate gradients. Gradient magnitudes of four nearest neighbors along the direction are

selected to compute two intermediate gradients.

The final gradient magnitude after directional NMS (marked as Mag_NMS(x, y) is stored back

into local memory and used as the input for the hysteresis thresholding unit.

3.5.CALCULATION OF THRESHOLDS

This unit can be pipelined with the directional NMS unit.The p1 value, which is determined by

the block classification unit, is multiplied with the total number of pixels in the block. The

obtained pixel number, noted by NoPixels_P1, is compared with each NoPixels_Ri in order to

select the level i. According to the selected level i, mag_max, and mag_min, the arithmetical unit

can compute the corresponding Ri, which is the high threshold ThH. low threshold is computed

as 40% of the high threshold.

3.6.THRESHOLDING WITH HYSTERESIS

The gradient magnitude of each pixel after directional NMS is fetched from local memory 1 and

used as input to the thresholding Unit., Output of threshold calculation unit, are also the inputs

for this unit. f1 represents a strong edge pixel while f2 represents a weak edge pixel. If any of the

neighbors of the current pixel is a strong edge pixel, the center weak edge pixel is then

considered as a strong edge pixel; otherwise, it is considered as a background non-edge pixel.

The latency between the first input and the first output is 10 cycles and the total execution time

for the hysteresis thresholding unit is m×m+10 cycles.

http://www.granthaalayah.com/

[Deokar et al, Vol.3(Iss.3):March,2015] ISSN- 2350-0530(O) ISSN- 2394-3629(P)

Science

INTERNATIONAL JOURNAL of
RESEARCH –GRANTHAALAYAH
A knowledge Repository

Http://www.granthaalayah.com©International Journal of Research -GRANTHAALAYAH [51-61]

4. CONCLUSION

Distributed Canny Edge Detector can be implemented for real time application as there is no

need of manual thresholding. In order to reduce hysteresis threshold selection cost, non-uniform

quantized histogram calculation is performed in distributed canny edge detection. It reduces

computation cost as compared to original canny edge detection algorithm. To support fast Real-

time Edge detection of images and videos Distributed Canny edge detection algorithm is

implemented in FPGA.

5. REFERENCES

[1] QianXu, ChaitaliChakrabarti and Lina J. Karam ,“A Distributed Canny Edge Detector

And Its Implementation On Fpga”978-1-61284-227-1/11/$26.00 ©2011 IEEE DSP/SPE

2011 500-505.

[2] QianXu, Lina J. Karam ,“A Distributed Canny Edge Detector: Algorithm and FPGA

Implementation”, IEEE Transactions on Image Processing DOI

10.1109/TIP.2014.2311656.

[3] Srenivas Varadarajan1, Chaitali Chakrabarti1, Lina J. Karam1and Judit Martinez

Bauza2 ,“A Distributed Psycho-Visually Motivated Canny Edge Detector”, 978-1-4244-

4296-6/10/2010 IEEE, ICASSP 2010.

[4] Wenhao He and KuiYuan ,“ An Improved Canny Edge Detector and its Realization on

FPGA” Proceedings of the 7th World Congress on Intelligent Control and Automation

June 25 - 27, 2008, Chongqing, China.

[5] Christos Gentsos, Calliope- LouisaSotiropoulou and Spiridon Nikolaidis Nikolaos

Vassiliadis “Real- Time Canny Edge Detection Parallel Implementation for FPGAs”

978- 1-4244-8 157 -6/ 1 0 ©20 10 IEEEICECS 20 10 499-502.

[6] Niranjan D. Narvekar and Lina J. Karam, “A No-Reference Image Blur Metric Based on

the Cumulative Probability of Blur Detection (CPBD)” , IEEE Transactions On Image

Processing, Vol. 20, No. 9, September 20112678-2683.

http://www.granthaalayah.com/

