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Abstract: 

Some properties of the right nucleus in generalized right alternative rings have been presented 

in this paper. In a generalized right alternative ring R which is finitely generated or free of 

locally nilpotent ideals, the right nucleus Nr equals the center C. Also, if R is prime and Nr  

C, then the associator ideal of R is locally nilpotent. Seong Nam [5] studied the properties of 

the right nucleus in right alternative algebra. He showed that if R is a prime right alternative 

algebra of char. ≠ 2 and Right nucleus Nr is not equal to the center C, then the associator ideal 

of R is locally nilpotent. But the problem arises when it come with the study of generalized 

right alternative ring as the ring dose not absorb the right alternative identity. In this paper we 

consider our ring to be generalized right alternative ring and try to prove the results of Seong 

Nam [5]. At the end of this paper we give an example to show that the generalized right 

alternative ring is not right alternative.  
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1. INTRODUCTION

The studies of varieties of rings like generalized right alternative rings, generalized alternative 

rings and generalized (–1, 1) rings were initiated by Kleinfeld [1, 2, 3] with the strongest result on 

the structure of generalized right alternative rings. Smith [4] studied certain generalized right 

alternative rings with equivalent nilpotencies. 

We know that a nonassociative ring R is said to be a generalized right alternative ring if it satisfies 

the following identities : 

𝐴̅(w, x, y, z) = (wx, y, z) + (w, x, [y, z]) = w(x, y, z) + (w, y, z)x, 1 

(x, x, x) = 0 2 

and ([x, y], y, y) = 0, for all w, x, y, z in R.  

Throughout this section R is assumed to be generalized right alternative ring with char. ≠ 2. The 

right nucleus Nr, the nucleus N and the centre C are defined as 
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Nr = {n  R / (R, R, n) = 0} – right nucleus.                                                                                   3  

N = {n  R / (n, R, R) = 0 = (R, n, R) = (R, R, n)} – nucleus.                                                         4  

C = {c  N / [c, N] = 0} – center.                                                                                                    5 

We use the following identities which are valid in generalized right alternative ring. 

𝐵̅(w, x, y, z) = (wx, y, z)–(w, xy, z)+(w, x, yz) = w(x, y, z)+(w, x, y)z .                                             6   

[xy, z] – x[y, z] – [x, z]y = (x, y, z) – (x, z, y) + (z, x, y).                                                                   7 

Substituting z = n  Nr in 4.3.1, we obtain  

(wx, y, n) + (w, x, [y, n]) = w(x, y, n) + (w, y, n)x.   

i.e., (w, x, [y, n]) = 0. 

 i.e., (R, R, [R, Nr]) = 0.  

Therefore [R, Nr]  Nr.                                                                                                                    8 

Subtracting 4.3.1 from 4.3.6 we obtain 

𝐶̅(w, x, y, z) = (w, x, zy) – (w, xy, z) – (w, x, y)z + (w, y, z)x = 0.                                                     9 

Now 𝐴̅(a, b, c, x, y) + 𝐴̅(a, b, x, y)c – 𝐴̅(a, b, c, [x, y]) – 𝐴̅(a, bc, x, y)  

– 𝐴̅a(b, c, x, y) – 𝐶̅(a, b, [x, y], c), we obtain 

𝐷̅(a, b, c, x, y) = ((a, b, c), x, y) – (a, (b, x, y), c) – (a, b, (c, x, y))  

                         – ((a, x, y), b, c) + (a, b, c)[x, y] – (a, b, c[x, y]) 

                         + (a, b, [x, y])c = 0.                                                                                               10                                              

Now with c  Nr in 4.3.10, we obtain  

(a, b, (c, x, y)) = – (a, b, c[x, y]) + (a, b, [x, y])c 

                        = – (a, b, c[x, y]) + (a, b, [x, y]c) 

                        = (a, b, [c, [x, y]])  

                        = 0. 

Hence (a, b, (c, x, y)) = 0 implies (R, R, (Nr, R, R)) = 0. 

i.e.  (Nr, R, R)  Nr.                                                                                                                        11 

Let us define 𝑁̅r = {n  Nr / nR  Nr} = 0.                                                                                   12 

n = z  Nr in 4.3.6 implies (w, x, yn) = (w, x, y)n.                                                                         13  

Linearization of 4.3.2 gives                     

𝐸̅[x, y] = (x, y, y) + (y, x, y) + (y, y, x) = 0                                                                                     14 

 

2. RESULT AND DISCUSSIONS 

 

Lemma 1: Suppose that m  Nr and x, y, z, w  R. Then 

(i)   (x, y, z)m = (x, y, zm) = (x, y, mz) = (x, ym, z)  

                       = (xm, y, z) – x(m, y, z); 

(ii)  [xy, m] = x[y, m] + [x, m]y + (m, x, y) – (x, m, y); 

(iii)  (x, y, z)[m, z] = 0; 

(iv)  (x, y, z)(m, w, z) = 0; 

(v)   If [m, R] = 0, then m  C. 

Proof:  To prove (i) we show that 

(x, y, zm) = (x, y, z)m, (x, y, mz) = (x, y, z)m, (x, ym, z) = (x, y, z)m and                                          (xm, 

y, z) – x(m, y, z) = (x, y, z)m. 
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From (13), we obtain (x, y, zm) = (x, y, z)m. 

From (9), we obtain (x, y, mz) = (x, yz, m) + (x, y, z)m + (x, z, m)y. 

i.e., (x, y, mz) = (x, y, z)m. 

Again from (9), we obtain  

(x, ym, z) = (x, y, zm) + (x, y, m)z – (x, m, z)y 

                = – (xy, z, m) + (x, yz, m) + (x, y, z)m – (x, m, z)y using (6)  

                = (x, y, z)m – (x, m, z)y. 

To show that (x, m, z)y = 0, we again consider    

(x, ym, z) = (x, y, zm) + (x, y, m)z – (x, m, z)y 

                = (x, y, zm) – (x, m, z)y 

                = (x, y, mz) – (x, m, z)y 

                = – (xy, m, z) + (x, ym, z) + x(y, m, z) + (x, y, m)z using (9) 

                = – (xy, m, z) + (x, ym, z) + (xy, m, z) + (x, y, [m, z]) – (x, m, z)y          

                     using (1). 

 i.e., (x, ym, z) = (x, ym, z) – (x, m, z)y. 

i.e., (x, m, z)y = 0. 

Hence (x, ym, z) = (x, y, z)m. 

Now we show that (xm, y, z) – x(m, y, z) = (x, y, z)m. 

For, from (6) we have 

(xm, y, z) – x(m, y, z) = (x, my, z) – (x, m, yz) + (x, m, y)z. 

                                   = (x, my, z) – (x, m, y)z + (x, y, z)m – (x, my, z) 

                                      + (x, m, y)z using (9). 

                                   = (x, y, z)m. 

Hence (xm, y, z) – x(m, y, z) = (x, y, z)m. 

(ii)   Using (7) with z = m  Nr, we obtain  

 [xy, m] – x[y, m] – [x, m]y = (x, y, m) – (x, m, y) + (m, x, y). 

i.e., [xy, m] = x[y, m] + [x, m]y + (x, m, y) – (m, x, y).  

(iii) Using 4.3.7 with x = y = z and z = m  Nr, we obtain 

[z2, m] – z[z, m] – [z, m]z – (z, z, m) + (z, m, z) – (m, z, z) = 0. 

i.e., [z2, m] = z[z, m] + [z, m]z –  (z, m, z) + (m, z, z) 

                  = z[z, m] + (zm)z – (mz)z – (zm)z + z(mz) + (m, z, z) 

                  = z[z, m] – (mz)z + z(mz) + (m, z, z) 

                  = z[z, m] + [z, (mz)] + (m, z, z), 

where  [z2, m]  Nr, (m, z, z)  Nr, mz  𝑁̅r. 

i.e., [z, (mz)]  Nr.  

Thus z[z, m]  Nr. 

Hence (x, y, z)[m, z] = 0. 

(iv) (x, y, z)(m, w, z) = (x, y, z(m, w, z)) 

                                  = (x, y, [z, (m, w, z)]) – (x, y, (m, w, z)z) 

                                  = – (x, y, (m, w, z)z). 

But (m, w, z)  Nr.  

Hence (m, w, z)z  𝑁̅r, from (12). 
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Thus (x, y, z)(m, w, z) = 0. 

(v) We use the following identity which is valid in any arbitraty ring. 

(x, y, m) + (y, m, x) + (m, x, y) = [xy, m] + [ym, x] + [mx, y]  

for all x, y  R  and m  Nr. 

Now using (12) and (8) and the hypothesis, we obtain [xy, m] = 0,  

[ym, z] = 0 = [mx, y] which implies (y, m, x) = – (m, x, y).  

So on rotation we have  (m, x, y) = – (y, m, x) = (x, y, m) = 0.  

Hence m  C. Thus we complete the proof of the Lemma.    ■  

Let 𝑅̃ be the ring obtained by adjoining a 1 to R in the usual way. 

We now prove the following Lemmas: 

 

Lemma 2: If n  N, then the ideal generated by [R, n] is   

Vn = 𝑅̃[R, n] = [R, n]𝑅̃. 

Proof: Let  𝑅̃[R, n] be the set of all finite sums  

 [ri, n] +  sj [tj, n]. 

Since n  N from Lemma (1), (ii) we obtain,  

[xy, n] = x[y, n] + [x, n]y, so that the two expressions for Vn are equal. Then  RVn = R 𝑅̃[R, n] = 

𝑅̃[R, n]  Vn and  

VnR = [R, n] 𝑅̃ R = [R, n] 𝑅̃  Vn. 

Hence Vn is an ideal of R.     ■                                                                                                                                                                             

 

Lemma 3:   Let V be the ideal of R generated by [R, Nr] and let  

P = {p  R; PV = 0}. Then  

(i)  V = 𝑅̃[R, Nr] = [R, Nr]𝑅̃;  
(ii)  if p [Nr, R] = 0, then  p  P; 

(iii) P is an ideal of R. 

Proof: (i) we have xn = [x, n] + nx.  

Now substituting n = [y, n]  Nr in the above equation implies  

x[y, n] = [x, n] + [y, n]x.  

i.e., 𝑅̃[R, Nr] = [R, Nr]𝑅̃. 

Let r  R and n  Nr then r(𝑅̃ [r, n]) = r𝑅̃[r, n] – (r, 𝑅̃, [r, n]) 

                                                              𝑅̃[R, Nr]. 

Hence r(𝑅̃ [r, n])  𝑅̃[R, Nr].  

Thus 𝑅̃[R, Nr] is a left ideal and  

𝑅̃[R, Nr]  R  R  𝑅̃[R, Nr] 

                    = (R, 𝑅̃, [R, Nr]) – R𝑅̃[R, Nr] 

                     𝑅̃ 𝑅̃[R, Nr] 

                    = 𝑅̃[R, Nr]. 

Thus 𝑅̃[R, Nr] is the right ideal. 

Hence 𝑅̃[R, Nr]  is an ideal of R.  

(ii) we have 0 = (p, 𝑅̃, [Nr, R])  
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                       = p𝑅̃  [Nr, R] – p  𝑅̃[Nr, R]  

i.e., p𝑅̃  [Nr, R] = p  𝑅̃[Nr, R]  

But PV = p  𝑅̃[Nr, R] 

               P[Nr, R] = 0.  

Hence p  P. 

(iii) If p  P  and r  R, then  

0 = (p, r, [Nr, R])  

   = pr  [Nr, R] – p  r[Nr, R] 

i.e., pr  [Nr, R] = 0 implies  pr  [Nr, R]  PV = 0.  

And (r, p, [Nr, R]) = rp  [Nr, R] – r  p[Nr, R]. 

i.e., rp  [Nr, R] = r  p[Nr, R] 

                          = 0 using (ii). Hence P is an ideal of R.   ■                                    

We know that a any arbitrary ring is purely nonassociative if R is not associative and contains no 

nonzero ideals in the nucleus N. But a generalized right alternative ring R purely nonassociative if 

the ring is of char. ≠ 2.  

Now we prove the following Lemma: 

 

Lemma 4: Suppose that R is semiprime and purely nonassociative. Then for all m, n  Nr and x, y 

 R, we have  

(i)   [n, x]2 = 0; 

(ii)  [m, n] = 0; 

(iii)  [x, n][x, m] = 0; 

(iv)  [x, m][y, m] = 0. 

Proof: We first show that 𝑁̅r = {n  Nr / nR  Nr} is an ideal of R.  

For, from (11) with n  𝑁̅r , x, y  R we obtain  

0 = (s, t, (n, x, y))  

   = (s, t, nx  y) – (s, t, n  xy).  

i.e., (s, t, nx  y) = (s, t, n  xy) = 0.   

Therefore nx  y  Nr. 

Thus  nx  𝑁̅r. 

Hence 𝑁̅rR   𝑁̅r . 

Now xn = [x, n] + nx, then xn  y = (x, n, y) + x  ny. 

But x  ny = [x, ny] + ny  x  Nr.  

So x  ny  Nr.  

Also (x, n, y) = – (n, y, x). 

Hence xn  y = – (n, y, x) + x  ny  Nr.  

Thus  xn  y  Nr.  

Therefore xn  𝑁̅r. 

 i.e., R𝑁̅r   𝑁̅r .  

Hence 𝑁̅r = {n  Nr / nR  Nr} is an ideal of R. 

We now show that P = {p  R / p𝑁̅r = 0} is an ideal of R. 
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For, with p  P, n  𝑁̅r we have  

yp  n = y pn = 0. 

Therefore yp  P.  

i.e., RP  P and  py  n = p  yn = 0. 

i.e., py  P.  

Hence  PR  P. Thus P is an ideal of R.  

From (6) with z  𝑁̅r, we obtain  

(wx, y, z) – (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z.  

Thus we have (w, x, y)z = 0. 

i.e., (R, R, R) 𝑁̅r = 0.  

Hence (R, R, R)  P. 

Now (P  𝑁̅r)
2  P 𝑁̅r = 0 and semiprimeness gives P  𝑁̅r = 0. 

Since (𝑁̅r, R, R)  P  𝑁̅r.  

Now x  Nr in (6) gives  

(w, xy, z) = (wx, y, z) + (w, x, yz) – w(x, y, z) – (w, x, y)z 

                = ((wx)y)z – (wx)(yz) + (wx)(yz) – w(x(yz)) – w((xy)z) + w(x(yz)) 

                    – ((wx)y)z + (w(xy))z 

                = – w((xy)z) + (w(xy))z. 

Thus (w, xy, z) = – (w, xy, z). 

i.e., (w, xy, z) + (w, xy, z) = 0.  

i.e., 2(w, xy, z) = 0. 

Hence by char. ≠ 2 we obtain (w, xy, z) = 0.  

Thus (R, NrR, R) = 0. 

Therefore (R, 𝑁̅r, R) = 0.  

Hence 𝑁̅r  N.  

Therefore by pure nonassociativity  𝑁̅r = 0. 

(i) From (6) we obtain  

(w, y, r[m, x][m, x]) = (wy, r[m, x],[m, x]) + (w, yr[m, x], [m, x])  

                                  + w(y, r[m, x], [m, x]) + (w, y, r[m, x])[m, x].  

But r[m, x]  Nr from Lemma 1 (iii).  

Therefore we obtain (w, y, r[m, x]2) = 0 implies [m, x]2  𝑁̅r.   

Hence [m, x]2 = 0. 

(ii) From (7), we have [R, Nr]  Nr. Now let [m, n]  Nr.  

From Lemma (1) (iii) [m, n]r  Nr.  

Hence from (6), we obtain  

0 = (w, x, r[m, n]) = (w, x, r)[m, n]. 

i.e.,(w, x, r)[m, n] = 0 implies (R, R, R)[Nr, Nr] = 0. 

i.e., A[Nr, Nr] = 0.  

But A being the associator ideal we have A ≠ 0 and hence [Nr, Nr] = 0.  

Therefore  we have [m, n] = 0. 

(iii) Linearization of (i) on n gives  
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 0 = [m + n, x][m + n, x]  

    = [m, x][m, x] + [m, x][n, x] + [n, x][m, x] + [n, x][n, x]  

    = [m, x][n, x] + [n, x][m, x]. 

Since Nr is commutative by (ii) this gives 2[m, x][n, x] = 0.  

Hence by char. ≠ 2, we obtain [m, x][n, x] = 0. 

(iv) Linearization of (i) on x and arguing as in (iii), we obtain  

[n, x][n, y] = 0. 

Thus we complete the proof of the Lemma. ■                      

 

Theorem 1: Suppose that R is semiprime and purely nonassociative. Then N = C. 

Proof:  Given n  N. Let Vn be as in Lemma 2. Then  

Vn
2 = 𝑅̃[R, n]  [R, n]𝑅̃  

       = 𝑅̃[R, n]  𝑅̃[R, n] 

       = – (𝑅̃[R, n], 𝑅̃, [R, n]) +(𝑅̃[R, n] 𝑅̃)[R, n].  

But (𝑅̃[R, n], 𝑅̃, [R, n]) = 0 implies that  

Vn
2 = (𝑅̃[R, n]  𝑅̃)[R, n] 

      = 𝑅̃ 𝑅̃ [R, n]  [R, n] 

       = 𝑅̃[R, n]  [R, n] 

       = (𝑅̃, [R, n], [R, n]) + 𝑅̃ [R, n][R, n] 

       = 𝑅̃ [R, n][R, n] 

       = 0 using Lemma 4 (iv).  

By the semiprimeness Vn = 0.  

Hence n  C.  

Thus N  C.   ■ 

 

Corollary 1: Suppose that R is prime but nonassociative then, N = C. 

Proof: It is sufficient to show that R is purely nonassociative. Let I be any ideal in the nucleus.  

Then (R, R, R)I = (R, R, RI)  (R, R, I) = 0.  

Thus if A = 𝑅̃(R, R, R) is the associator ideal of R, then AI = (0). But R is nonassociative and prime 

so we have I = 0. Thus R is purely nonassociative.  ■                                                                                

From now onwards R is assumed to be semiprime and purely nonassociative.  

 

Lemma 5: If mNr and m[Nr, R] = 0 then m  C. If further m2 = 0, then m = 0. 

Proof: Let P be as in Lemma 3. Then m  P by Lemma 3 (ii).  

So [m, R]  P  V. Since PV = 0 we find as in Lemma 4 that [m, R] = 0. By Lemma 1 (v) we 

obtain m  C. Hence the ideal generated by m is 𝑅̃m. If m2 = 0, then (𝑅̃m)2 = 0, so that 𝑅̃m = 0. 

Hence m = 0.  ■                                                           

For a given finite list M = {a1, …, ak} of elements of R, we define T(M) = [Nr, a1]…[Nr, ak], i.e., 

{[m, a1]…[m, ak]; mi  Nr}. We note that T(M)  Nr. Also, by Lemma 4 (ii) it is zero if it has any 

repetitions. For the same reason if t  T(M) then t2 = 0. 
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We shall allow the empty list M = , defining T( ) = 1. (The unit element of 𝑅̃). In all cases 

including M =  we have [Nr, a]T(M)          = T(M  {a}). Next we define, L(M) = {w  R: [w, 

Nr]T(M) = 0}. In particular, L( ) = {w R : [w, Nr] = 0}. 

Now we prove the following Lemma: 

 

Lemma 6:  (i) If b  L(M) then, (Nr, b, R)T(M) = 0. 

                          (ii) L(M) is a subring of R. 

Proof: (i) We have 0 = (Nr, R, R)[b, Nr]T 

                                    = (Nr, b, R)[R, Nr]T  using Lemma 1 (iii) 

                                    = (Nr, b, R)[[R, Nr], T] + T [R, Nr]  

                                    = (Nr, b, R)T [R, Nr] using Lemma 4 (ii) 

                                    = (Nr, b, RT)[R, Nr] using Lemma 1 (i). 

Thus if z  (Nr, b, RT), then z[R, Nr] = 0. Also z is of the form (m, b, r).  

So z2 = 0 by Lemma 1 (iv). Hence z = 0 by Lemma 5. 

 i.e., 0 = (Nr, b, RT) = (Nr, b, R)T. 

(ii) Suppose that x, y  L(M) and m  Nr. Then by Lemma 1 (ii) we obtain [xy, m] = x[y, m] + [x, 

m]y + (m, x, y) – (x, m, y).  

Since T  Nr we now have 

[xy, m]T  x[y, m]T + ([x, m]y)T + (m, x, y)T –(x, m, y)T.  

Now substituting [x, m] = m, we obtain 

[xy, m]T  x[y, m]T + [m, y]T +y[x, m]T + (m, x, y)T – (x, m, y)T.  

The first three terms are zero by the assumption and (m, x, y)T = 0 by Lemma 6 (i).  

To show that (x, m, y)T = 0, we use equation (6) 

(xm, y, T) – (x, my, T) + (x, m, yT) = x(m, y, T) + (x, m, y)T.  

But T = [Nr, a]  Nr.Hence we obtain (x, m, yT) = (x, m, y)T which implies (x, m, y[Nr, a]) = (x, m, 

y)[Nr, a]. Hence (x, m, y[Nr, a]) = 0 since y  L(M). Thus (x, m, y)[Nr, a] = 0. That is (x, m, y)T = 

0  and since m  Nr was arbitrary. This shows that [xy, Nr]T = 0. Thus xy  L. Therefore L(M) is 

a subring of R.    ■                                                                                                       

 

We say that R is finitely generated mod Nr if there is a finite subset M of R such that the subring 

of R generated by Nr  M is all      of R. 

 

We now prove the following Theorem: 

 

Theorem 2:  Suppose that R is semiprime purely nonassociative and is finitely generated mod Nr. 

Then Nr = C. 

Proof: Suppose that R is generated by Nr  M, where M = {a1, …, ak} we will show that if S is 

any list of terms from M, then L(S) = R and  provided that S ≠ , T(S) = 0.  

We do so by reverse induction on the length r = Sof S. If S= k + 1 then S has repetitions, so 

that T(S) = 0. Hence clearly L(S) = R. Suppose that we have both results for list of length r + 1, 

and S is the list of length r. Then for a  M we have [a, Nr] T(S) = T(S), where S = S  {a} has 
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length r. Thus [a, Nr] T(S) = 0. So a  L(S). Hence M  L(S). As [Nr, Nr] = 0 by Lemma 4 (ii), we 

also have Nr  L(S). Thus by Lemma 6 (ii), L(S) is a subring of R containing M  Nr. That is L(S) 

= R. Next suppose that S ≠ , and t  T(S). Since L(S) = R, we have [R, Nr]T(S) = 0. Hence t[R, Nr] 

= 0. Also we have seen that t2 = 0. So by Lemma 5 we have t = 0.That is T(S) = 0. This concludes 

the induction. Hence L() = R gives [R, Nr] = 0. Thus Nr = C by Lemma 1 (v). ■ 

 

Theorem 3: Suppose that R is purely nonassociative and free of locally nilpotent ideals. Then Nr 

= C. 

Proof: From Lemma 4 (ii) [m, n] = 0, where m, n  Nr implies Nr is commutative. But (Nr, R, R) 

 Nr from 4.3.11 and [Nr, R]  Nr  from (8). Now if Nr is contained in N the right alternative 

nucleus which is defined by N = {n  R / (x, x, n) = (x2, x, n) = (x2, y, n) + (x ○ y, x, n) = 0  x, 

y, R} and (Nr, Nr, R) = 0. Using the identity (14) with b  Nr we have (a, b, b) = 0, (b, a, b) = 0 

and so (b, b, a) = 0. That is (Nr, Nr, R) = 0. Thus if we let I be the nil radical of Nr, then I + I R is 

locally nilpotent ideal of R such that (Nr, R, R), [Nr, R]  I. Since R is free of locally nilpotent 

ideals (Nr, Nr, R) = 0 and [Nr, R] = 0. And from Lemma 1 (v) we obtain Nr = C. Thus we complete 

the proof of the Theorem.     ■         

We consider the prime rings in which Nr ≠ C (supposing such exist). In such a ring the ideal V of 

Lemma 3 is nonzero by Lemma 1 (v). Hence the ideal P is zero. Thus by Lemma 3 (ii), if p[Nr, R] 

= 0 then p = 0. We assume that R has this later property (and do not appeal directly to the 

primeness). 

We now prove the following Lemmas: 

 

Lemma 7: If u is of the form (z, w, b) or y(z, w, b) then, (x, b, u) = 0. 

Proof: If m  Nr then from (10), we obtain  

((x, b, u), r, m) – (x, (b, r, m), u) – (x, b, (u, r, m)) – ((x, r, m), b, u)                              

       + (x, b, u)[r, m] – (x, b, u[r, m]) + (x, b, [r, m])u = 0. 

We have ((x, b, u), r, m), (x, (b, r, m), u), (x, b, (u, r, m)), ((x, r, m), b, u),  

(x, b, [r, m])u are all equal to zero since m  Nr.  

But (x, b, u[r, m]) = 0 since u[r, m]   𝑁̅r.   

Thus we have (x, b, u)[r, m] = 0. 

i.e., (x, b, u)[R, Nr] = 0.  

Hence we have (x, b, u) = 0.    ■   

 

Lemma 8: If X  R then,  

(i)     the left ideal of R generated by (R, X, R) is 𝑅̃(R, X, R); 

(ii)    the left ideal of R generated by X is LX = 𝑅̃X + 𝑅̃(R, X, R);  

Proof: (i) we have r  s (a, x, b) = rs  (a, x, b) – (r, s, (a, x, b)). Substituting rs = r, we obtain  

r  s(a, x, b) = r  (a, x, b) – (r, x, (a, s, b)).  

By Lemma 7 it is in 𝑅̃(R, X, R). 

(ii) This is now obvious from R  𝑅̃X  RX + (R, R, X) and part (i).   ■                      
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Given a, b  R we will write La for 𝑅̃(R, R, a) = L(R, R, a) and La, b for L(R, a, b). Clearly La, b    

La. 

 

Lemma 9: (i) La [Nr, a] = 0; 

                          (ii) La, b [Nr, R]  Lb [Nr, a]; 

                          (iii) (R, Lb, b) = 0. 

Proof: (i) La [Nr, a] = 𝑅̃ (R, R, a)[Nr, a] 

                                  = 0 using Lemma 1 (iii). 

(ii) (R, a, b)[Nr, R] = (R, R, b)[Nr, a]     

                                 Lb [Nr, a]. 

Now set U = (R, R, (R, a, b)).  

Then U [Nr, R] = (R, R, (R, a, b)[Nr, R]) 

                           (R, R, La,b [Nr, R]) 

                           (R, R, Lb [Nr, a]) 

                          = (R, R, Lb)[Nr, a] 

                           Lb [Nr, a]. 

Hence Lb is a left ideal.  

Now La,b [Nr, R] = 𝑅̃((R, a, b) + U)[Nr, R] 

                            = 𝑅̃((R, a, b) + (R, R, (R, a, b)))[Nr, R] 

                            = 𝑅̃((R, a, b)[Nr, R] + (R, R, (R, a, b))[Nr, R]) 

                            = 𝑅̃ La,b [Nr, R] + 𝑅̃(R, R, La, b)[Nr, R] 

                              𝑅̃ Lb[Nr, a] = Lb[Nr, a]. 

(iii) From Lemma 7 we have (R, Lb, b) = 0 where Lb = 𝑅̃(R, R, b). ■                

 

Lemma 10: (i) (La, b, R, La, b) = 0; 

                            (ii) L2
a, b = 0. 

Proof: Using Lemma 1 (i) we have  

(La, b, R, La, b) [Nr, R] = (La, b, R, La, b[Nr, R])  

                                    (La, b, R, Lb [Nr, a]) using Lemma 9 (ii) 

                                    (La, b[Nr, a], R, Lb) – La, b([Nr, a], R, Lb) 

which is obtained by using Lemma 1 (i). The first term is zero by Lemma 9 (i). The second term 

is contained in Lb(Nr, R, Lb) = 𝑅̃(R, R, b)(Nr, R, Lb) since (Nr, R, R)  Nr. But (R, R, b)(Nr, R, Lb) = 

(R, R, R)(Nr, b, Lb) is obtained using Lemma 1 (iv) and this is equal to zero using Lemma 9 (iii).  

Thus we have (La, b, R, La, b)[Nr, R] = 0. 

(ii) Using Lemma 9 (ii) we have  

La, b La, b [Nr, R]  La, b Lb [Nr, a]  

                            La, b [Nr, a]Lb + La, b [Lb, [Nr, a]]. 

The first term is zero by Lemma 9 (i).  

The second term is contained in  

Lb[Lb, Nr] = R(R, R, b)[Lb, Nr] 

                 = R(R, Lb, b)[R, Nr] by Lemma 1 (iii)   
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                 = 0 using Lemma 9 (ii). 

 Hence L2
a, b [Nr, R] = 0. 

Thus L2
a, b = 0.   ■                                                                      

Suppose now that we are given finitely many left ideals Xi = Lai,bi. 

 

Lemma 11: Suppose that c1…ck are such that each ci is in some Xj, and p is the left associated 

product c1…ck. Then  

     (i) either p = 0 or every ci is in a different Xj ; 

    (ii) if some ci is in Xj, then p is in Xj 𝑅̃. 

Proof: We shall prove the Lemma by using the induction on k. If k = 1 both conclusions are trivial. 

Suppose that the Lemma is proved for k – 1, and write p = c1q. If q = 0, then p = 0 and both the 

conclusions hold. Suppose then that q ≠ 0. 

(i) By induction hypothesis, q has all ci in different Xj. If c1 is in a new Xj, then c1  Xj, then p is of 

the required type.  

      Suppose then that c1  Xj and some ci of q is also in Xj. By induction hypothesis q = Xj 𝑅̃.  

Hence p  Xj  Xj𝑅̃  

               = Xj 
2 𝑅̃ using Lemma 10 (i) 

               = 0 using Lemma 10 (ii). 

(ii) If c1  Xj then certainly p = c1q  Xj𝑅̃. If ci  Xj  for some i  > 1, then by inductive hypothesis 

q  Xj𝑅̃. But it is easily verified that if L is a left ideal of R then so is L𝑅̃. Thus Xj𝑅̃ is a left ideal.  

Hence p  Xj𝑅̃.     ■                                                                                                          

 The left power of a ring X are defined by X[1] = X and X[n + 1] = X  X[n] . The ring X is left nilpotent 

if for some n we have X[n] = 0. 

 

Lemma 12: Suppose that R is prime and Nr ≠ C. Then any finite generated left ideal of R contained 

in the asociator ideal A = 𝑅̃(R, R, R) is left nilpotent.  

Proof: Suppose that p  A. Then p is a linear combination of terms of the form (r, a, b) and s(r, a, 

b) for various a, b  R and r, s  R. The left ideal of R generated by p is thus contained in the left 

ideal generated by all such terms. But the left ideal generated by (r, a, b) or by s(r, a, b) is contained 

in La,b. Hence the left ideal generated by p is contained in a finite sum Sp = ∑ 𝐿𝑗 aj,bj say. Thus to 

show that Q is left nilpotent it suffices to show that any left ideal of the form X = ∑ 𝑋𝑚
𝑘=1 k is 

nilpotent, where Xk = Lak, bk for some ak, bk  R. But from Lemma 11 (i) that any left-associated 

product of length m + 1, with each term in some Xk is zero. Since every element of X[m + 1] is a 

linear combination of terms of the type, we have X[m + 1] = 0. Thus X is left nilpotent, as required.      

■ 

 

Theorem 4: Suppose that R is prime and Nr ≠ C. Then any finite generated subring of the asociator 

ideal is left nilpotent. 

Proof: Suppose that p is a finite subset of M, and S is a subring it generates. The left ideal Q of R 

generated by p is left nilpotent by Lemma 12. Since S  Q we conclude that S is left nilpotent. But 
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now a result of Slinko [6] shows that S, being left nilpotent and finitely generated, is infact 

nilpotent. Thus we complete the proof of the Theorem.    ■                                                                                                                         

We give an example of a generalized right alternative ring which shows that generalized right 

alternative ring is not right alternative. 

Example: If R is an associative and commutative ring with an element ½, and M is any module 

over R, then S = R  M can be made into a generalized right alternative ring by the following 

definition of addition and multiplication. Addition is coordinate wise and multiplication is given 

by [a, m][a, m]= [aa, ½am + ½am]. If we identify M by {0}  M, then M is a two-sided ideal 

of S, and [S, M] = 0. If  ½ + ½ = e (e is the identity of R) then e is an idempotent of S, and – 4(m, 

e, e) = m for all m  M. There exist generalized right alternative ring which are not right alternative.   

■   

 

3. CONCLUSIONS 

 

The ring defined by 𝑅̃ which is obtained by adjoining a 1 to R in the usual way leads Vn which is 

defined as Vn = 𝑅̃[R, n] = [R, n]𝑅̃ to an ideal. Not only Vn  but also makes P an ideal defined which 

is defined by P = {p  R; PV = 0}. In a semiprime and purely nonassociative generalized right 

alternative ring the nucleus equals the center only if 𝑁̅r = {n  Nr / nR  Nr} is an ideal of the ring. 

An additional condition on R is produce which ensures not merely that N = C (as in Theorem 1) 

but the stronger result Nr = C.           
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