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ABSTRACT 
Water is a critical resource that sustains life, and its availability should be secured.The 
freshwater is contaminated due to human activities and consequently is enriched in 
foreign and potentially dangerous species. These pollutants can be classified into 
biological components that include microbes (bacteria, viruses and fungi), inorganic 
compounds (radioactive materials and heavy metals), and organic compounds (drugs, 
soaps, pesticides, fertilizers, and oils) are not only harmful to human health and the 
environment but also induce changes in natural aqueous habitats and organisms thus 
affecting the water quality and ecological balance. 
Fulfilling the demand for clean drinking water to the general public has been a 
challenging task in developing countries. Among various water treatment technologies, 
the utilization of nanomaterials and nanostructures has received significant 
consideration due to their sustainability and stability. The dimensions of nanomaterials 
impart exceptional chemical and physical properties, such as multivalent interactions 
with bio-molecular and cellular systems. This paves the way to treat biofouling of water 
with nanomaterial due to their antimicrobial properties and reduces the possibility of 
harmful disinfection by-products (DBPs) formation. Different types of nanomaterials that 
can act as nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic 
membranes, nanomembranes and nanoparticles (nanocelluloses) provide an efficient 
methodology for solving water bio fouling problems. These highly efficient nanomaterials 
owing to the high aspect ratio, surface charge, surface area and mechanical strength can 
serve as remediation for biofouling of water. However, the major issue with 
nanomaterials synthesized conventionally is their toxicity although the synthesis of 
nanomaterials using green routes can serve as an answer to this problem. 
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1. INTRODUCTION 
Water is a vital resource to sustain life and thus is the most basic and 

irreplaceable need of our ecosystem. Its adequate, safe and accessible supply must 
be available to all. Improved access to safe drinking water might aid in improved 
health worldwide. So, every effort should account for safe drinking water that is free 
of any toxins (chemical, physical or biological) Prest et al.(2016) As per WHO 
guidelines, safe drinking water does not represent any significant risk to health over 
lifetime consumption and it includes the different sensitivities that may occur 
between life stages. Safe drinking water is required for all domestic purposes that 
include drinking, food preparation and personal hygiene. 

The advanced anthropogenic activities have led to an exponential rise in water 
pollution thus mortifying the quality of drinking water. This polluted water contains 
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heavy metals, pesticides, fertilizers and a high organic load. This puffed-up organic 
load adds to higher microbial growth within water bodies which accounts for 
waterborne diseases all over the world and the greatest threat to public health is the 
consumption of unsafe water-carrying microbes from human and animal excreta. 
The number of waterborne disease outbreaks have been associated with poor 
treatment of water supplies and substandard management of drinking water 
distribution systems Schurer et al. (2019). 

 As per WHO, in 2020 there were 5.8 billion people (74% of the global 
population) safely managed drinking-water services while the remaining two billion 
were without safely managed services. Those who are generally atrisk of 
waterborne diseases areinfants and children, the elderly or one with sensitive 
immune responses. The majority of this population belongs to the continents of Asia 
and Africa.  

The differential access to safely managed water services between developed 
and developing world is due to sharp geographic, socio-cultural and economic 
inequalities in rural and sub-urban areas. Access to low-quality water-borne 
services accounts for 8,29,000deaths per year, out of which half are children. The 
sources of drinking water such as water bodies or groundwater may contain several 
microbial pathogens which may pose a serious threat to human health. The drinking 
water might be contaminated with faeces from animals, birds and humans. Faecally 
derived pathogens are the foremost concern in setting health-based goals for 
microbial safety WHO (2022). The water might be contaminated during the 
withdrawal, collection, storage and transportation of water. Importantly, water 
contamination at the source is minimal as compared to storage spaces. The 
contamination of these biological infectious entities shoots up with their 
multiplication and the presence of biofilms in water storage and distribution 
systems Vavourakis et al. (2020). 

Among microbial pathogens, bacterial infection stands out.Bacterial pathogens 
such as Burkholderiapseudomallei, Escherichia coli, Pseudomonas aeruginosa, 
Salmonella typhi, Vibrio cholerae, Yersinia enterocolitica, Plesiomonas, 
Campylobacter spp., Shigella spp., etc.may prove lethal to human systems. These 
bacterial pathogens may lead to infections such as typhoid, cholera, intestinal 
infections and many more Abdulrahman (2022). 

Since the early twentieth century, conventional methods have been used for 
water treatment such as coagulation, decontamination, disinfection, desalination, 
filtration and sedimentation. These processes require large systems, infrastructure 
and engineering expertise which makes them highly labour-intensive and 
burdensome. Disinfection is undeniably important in a safe drinking water supply 
and should be used for both surface and underground water subject to faecal 
contamination. The destruction of pathogenic microbes ensures their safety to 
consumers. Furthermore, the chemicals such as chlorine, ammonia, hydrochloric 
acid, alum, ozone and coagulants can contaminate the fresh water to great extent. 
Disinfection efficacy may also be unsatisfactory against microbes forming flocs, 
films or particles which increase their resistance to the disinfectants. Hence, the 
situation demands low-cost, effective and robust techniques. Here nanotechnology 
can offer a promising solution as the nanoparticles are known to kill the resistant 
bacterial species and break down the robust bacterial films which cannot be 
breached by chemicals Makabenta et al. (2021), Sahli et al. (2022). 
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2. CLINICALLY IMPORTANT BACTERIA IN WATER 

Waterborne diseases are caused by pathogenic bacteria, parasites and viruses 
and are responsible for widespread health risks associated with drinking water. The 
public health burden of disease is calculated by the severity and incidence of the 
illness caused by the pathogen, its infectivity and microbial load Rani (2021). 

Waterborne pathogens have the following properties that differentiate them 
from other contaminants: 

1) These can cause both acute and chronic health effects. 
2) These microscopic entities are aggregated or adhered to the suspended 

solids in the water. 
3) The microbes can grow in the water and are discrete. 
4) The invasiveness and virulence of the pathogen determine its infectivity. 
5) The disease progression in the host depends upon exposure to microbial 

load and the immune status of the host. Once the disease is established, 
the microbes multiply in the host.  

The presence of different types of these pathogens determines the water 
microbiology. The microbial growth of these microbes is supported by water. The 
principal bacterial agents that cause various waterborne infectionssuch as 
Salmonella typhicausing typhoid fever; Salmonella paratyphi-A responsible for 
paratyphoid fever; Salmonella (and other serotypes) causative agents of 
salmonellosis and enteric fever; Vibrio cholerae causing cholera and Pseudomonas 
aeruginosa leads to various infections. These bacterial agents causing a different 
type of infectionsthat are summed up in Table 1 Although the mere presence of 
these bacterial agents is not sufficient to cause the infection. The minimum viable 
cells (for example a dose of 106-108 Salmonellae per person in strain) are required 
to elicit the infection though virulence may vary from strain to strain. The infecting 
dose also varies with the age and immune resistance of the infected population. The 
most susceptible are infants, the elderly and immuno-compromised patients 
(Mackenzie et al. (1968), Kumar et al. (2022). 

 Virulence is a genetic trait Meynell (1961), Brown et al. (2006). The phenotypic 
expression of virulence may vary even in a clone of the strain. In a given population 
of cells, a small number of microbes can be unusually virulent Meynell (1961), 
Brown et al. (2006). Thus, some enteric microbes can infect even if a few numbers 
of cells are present. Some pathogens are shown to transfer virulence from infectious 
strains to non-infectious ones thus transferring them to virulent ones. Thus, these 
virulent factors can be transferred to residential non-infectious intestinal microbial 
flora.  
Table 1 

Table 1 Water-Borne Microbial Infections 

Pathogen Infection References 
Vibrio cholerae Cholera Kumar et al. 

(2014) 
V. alginolyticus Soft Skin Infections 

 

V.fluvialis 
V. hollisae 
V. mimicus 

Diarrhea & Gastrointestinal Infections Abraham (2011) 

V. parahaemolyticus Gastro-enteritis Ottaviani et al. 
(2012) 
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V. vulnificus Speticemia& Wound Infection Gulig et al. 
(2005) 

Salmonella enterica Salmonellosis Kumar et al. 
(2014) 

Shigella dysenteria Shigellosis 
 

S. sonnei 
  

S. fiexneri, 
  

Escherichia coli Gastroentritis, diarrhea, traveller’s 
diarrhea 

Kumar et al. 
(2014) 

Enterohemorrhagic E. coli (EHEC 
strains) e.g., E. coli O157: A 

Bloody diarrhea, hemolytic uremic 
syndrome 

Goldwater et al. 
(2012) 

Mycobacterium Avium Complex (Mac) Highly resistant cholera Uchiya et al. 
(2015) 

Helicobacter pyroli Gastritis (Peptic & duodenal ulcer 
disease and gastric carcinoma) 

Graham. (2014) 

Aeromonas hydrophyla Gastroenteritis, Septicemia, meningitis 
and wound infection 

Rao et al. (2022) 

Clostridium perfringens Gastroenteritis Yonogi et al. 
(2014) 

Leptospira sp. Leptospirosis Kumar et al. 
(2014) 

Francisellatularensis Tularemia Maurin (2020) 
Yersinia enterocolitica Gastroenteritis Kumar et al. 

(2014) 

 
3. WATER DISINFECTION PROCESSES 

The water borne pathogens pose serious global challenges with millions of 
people losing their life every year worldwide. Biological contamination of water can 
be curbed with water disinfection techniques. Among various methods, chlorination 
is preferred method in various developing countries and developed countries 
because of its simple application and cost effectiveness.Biological pollutants are 
detoxicated by various physical processes such as adsorption, heating, distillation 
and filtration; chemical processes like flocculation, light irradiation and photo 
catalysis and biological processes such as activated sludge.  These methods not only 
battle the microbial pollution but also oxidize iron and manganese in water bodies, 
enhancing coagulation and filtration activity and eliminating taste and color. The 
incompetence of these processes has directednecessity of more efficient systems for 
microbial inactivation as the byproducts of these processes are chlorites, chloral 
hydrates, dibutyl phthalates, haloacetic acids and haloacetonitriles that are highly 
mutagenic and carcinogenic. There are around 600 biproducts among 
whichchlorate tops the chart followed by bromochloro-, bromodichloro-, 
dibromochloro-, and tribromoacetic acid, trichloronitromethane, and chloral 
hydrate Muellner et al. (2007). As per Muellner, the limitations of current 
disinfectants can be enlisted as follows: 

1) Short range of anti-microbial activity. 
2) Harmful by-products during and after the processes of disinfection. 
3) Highly corrosive for surfaces and equipment’s. 
4) Rapid degradation needs instant formulations which are tedious methods. 
5) Disposal of these products needs biosafety considerations. 
6) Storage of such disinfectants is also labor intensive. 
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7) These techniques are slow, and their repeated use can create resistant 
microbial flora which needs to be tackled. 

The resistant microflora is another major challenge.  This free-living microflora 
can attach to the surface and aggregate to form multicellular communities known as 
biofilms. These biofilms are made up of   extracellular polymeric substancesthat are 
recalcitrant to antibiotics therapies. These are one of another major cause of 
recurrent and persistent infections of clinically important microbes such as 
Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. 

Thus, these conventional techniques of water disinfection with range of issues 
needs to be replaced by eco-friendly, highly robust and advance technique with high 
efficiency and efficacy Kooij (2000), Arshad et al. (2019). 

 
4. NANOTECHNOLOGY 

The declining freshwater quality has increased the application of wide range of 
disinfection processes for producing drinking water. The expensive methods are 
applied for disinfection of drinking water. Most of modern disinfection processes 
rely upon physical and chemical treatment technologies. The traditional methods 
for managing the pathogenic microbes involve the water heating Cabral (2010), 
Tahir (2019), UV irradiation Tsenter et al. (2022), chlorine and ozone treatment 
Tony et al.(2016), Zhang et al.(2016), Morrison et al. (2022). These methods are 
highly effective but may generate excessive secondary pollutants with greater 
toxicity than parent molecule. Highly toxic elements like trihalomethanes (such as 
DBP) are formed after chlorine treatment which might cause significant health 
hazard above 160ppb Bellar et al. (1974), Costet et al. (2011), Singh et al. (2020), 
Kumari and Gupta (2022). Other conventional systems for water disinfection are 
filtration through membrane systems. These includes the membrane-based 
processes like reverse osmosis (RO), nanofiltration and ultrafiltration where the 
membrane choking is most common problem which decreases the membrane 
efficiency Mishra et al. (2021), Yu et al. (2022). 

The chemical treatments are based on oxidation of organic components in the 
living cells. However, this particular disinfection is not equally effective especially 
for the viruses that are less susceptible. The answer to current problem can be 
solved by nanotechnology.  Nanotechnology ismanipulation of materials at the 
nanometer scale in order to improve and obtain new properties of materials 
Hornyak et al.(2008), Srinivas (2014), Kumar et al.(2021). Nanomaterials are the 
materials with dimensions smaller than 100nm (at least one dimension) and can be 
synthesized by self-assembling of atoms. These nanostructures can be: 

1) Zero Dimensional Nanomaterials (0D-NMs): Nanoparticles are zero 
dimensional structures Grzelczak et al.(2008), Hornyak et al. (2008), Ray et 
al.(2020), Shen et al.(2023). These have all their dimensions at nano scales 
such as nanoparticles. 

2) One Dimensional Nanomaterial (1D-NMs): Thes nano-materials have 
two dimesions at nanoscales. Nanorods, belts, fibres, tubes and nanowires 
are one dimensional structure Sugunan et al. (2006), Khan and Hossain 
(2022). 

3) Two Dimensional Nanomaterials (2D-NMs): These nanomaterials have 
material thickness at nanoscales. Sheets, plates, thin films, flakes and 
coatings are two dimensional structures Aoki et al. (2005), Ray et al. (2020), 
Khan and Hossain (2022). Graphene sheets were first synthesized as 2D-
NMs. 
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4) Three Dimensional Nanomaterials (3D-NMs): 3D-NMs are synthesized 
using basic units of 0D-NMs, 1D-NMs or 2D-NMs. Arrays, hierarchical 
structures are three dimensional structures Von et al. (2010), Singh et al. 
(2020), Khan and  Hossain (2022) 

This availability of vast range of nanostructures with controlled properties and 
in nanometer sizes that to similar with most of biomolecules have sparked 
widespread interest in their application. At nanoscale, these materials possess novel 
properties that can be used for water disinfection. Some of these applications are 
based on the high specific surface ratio that adds to fast dissolution, high reactivity 
and strong sorption while others take advantage of properties such as 
superparamagnetism, localized surface plasmon resonance, and quantum 
confinement effect Von et al. (2010),  Hajipour et al. (2012), Guo et al. (2013), Philip 
and Kumar (2022).  

 
5. SYNTHESIS OF NANOSTRUCTURES 

Synthesis of nanostructures especially nanoparticles include two main 
approaches i.e. (1) Top-down synthesis and (2). Bottom-up synthesis. In top-down 
synthesis, destructive approach is employed. The larger molecule is decomposed to 
smaller ones which are then converted to suitable nanostructures. Various 
decomposition techniques used are grinding/milling, CVD (Chemical 
VapourDeposition), Physical VapourDeposition, Sonication etc. Abid et al. (2022), 
Gutiérrez et al. (2022). This approach was used to synthesize magnetite 
nanoparticles from natural iron oxide (Fe2O3). The size of nanoparticles formed in 
presence of oleic acid was reported to be 20nm to 50nm Pal (2020), de et al. (2022). 

Another method is Bottom-up synthesis.Here,nanomaterials are formed from 
simpler substances thus known as bottom-up approach. Various techniques 
employed in bottom up approach are sedimentation and reduction techniques 
including sol gel, green synthesis, spinning and biochemical synthesis Nkele and 
Ezema (2020), Guan et al.(2022), Samuel et al.(2022). Nanoparticles based TiO2 
anatase were synthesized. These TiO2 based nanoparticles had graphene 
domainsand were synthesized using alizarin and titanium isopropoxide precursors. 
Well uniform spherical nanoparticles were synthesized. More recently, green and 
biogenic bottom-up synthesis is being followed by many researchers as this process 
is more feasible and less toxic in nature. The synthesis of nanomaterials is achieved 
via biological systems such as plant extracts, bacteria, yeast, fungi and human cells 
making them more cost effective and nature friendly Shah et al. (2021), Noah and 
Ndangili (2022). 

 
5.1. APPLICATIONS  
The recent advances in nano sciences offer surmount opportunities for 

treatment of water and water systems. Nanotechnology enabled water treatment 
systems to overcome the major challenges faced by existing treatment technologies 
Qu et al. (2013). 

The antibacterial properties of various nanostructure vary from one 
nanoparticle to another. 

1) Carbon Based Nano-Adsorbents 
Carbon is one of most abundant and versatile elements on the planet. It has 

wide range of applications.Carbon nanomaterials are known for their sorption 
qualities due to their unique structures and electronic properties. These can adsorb 
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wide range of contaminants with faster kinetic rates and also have large surface 
area. There are array of carbon nanomaterials ranging from carbon nanotubes 
(CNTs) to carbon beads. Among these fullerenes and CNTsare most widely 
scrutinized due to their stability Arshad et al. (2019). 

2) Fullerenes 
Fullerenes are the allotropes of carbon where the carbon atoms are 

sp2hybridized to form globular hollow cage like nanostructurewith various shapes 
(hollow sphere, ellipsoid etc.)as shown in Figure 1. The spherical fullerene is known 
as buckminsterfullerene (C60; bucky balls or bucky onions). C60 is primary 
structure of all fullerenes. The cage like fused ring shape is made up by twenty 
hexagons and twelve pentagons. The ‘buckyballs’ is the favorably regarded as it has 
ability to form the derivatives of fullerenes and nanocomposites. The derivatives of 
fullerenes range from diphosphonate, phosphonates to organophosphorus 
compounds. However, the fullerenes lag at solubility and nearly insoluble in organic 
solvents such as toluene and carbon disulphide. Theirmoderate solubility at room 
temperature has been put to use. These can be synthesized via various methods such 
as arc discharge, CVD, laser ablation, laser irradiation of polyaromatic hydrocarbons 
(PAHs) and resistive arc heating of graphite.Fullerenes and their derivatives have 
outstandingfunctions as antioxidants, biopharmaceutical compounds, catalysts, 
organic photovoltaics and water purification/ bio-hazard protection catalysts Shah 
et al.(2021).  

These nanostructures testified to have high electron affinity, high electrical 
conductivity, high strength, stable structure and are highly versatile Astefanei et al. 
(2015), Kurosawa et al. (2021). Pentacatonic fullerenes designed by Thota and co-
workers had high water solubility and were found to be effective against both gram-
positive and gram-negative bacteria Thota et al. (2012). 

Fullerenes can also be substituted with polyhydroxyl groups to generate 
fullerenols. These fullerenols have shown high antioxidant activity due to increase 
in number of oxygen atoms. These nanoparticles have high specific area and 
chemically incorporated antibacterial action making them attraction to researchers 
in last few years Shah et al. (2021). 
Figure 1  

  
Figure 1 The Different Allotropes of carbon: (A) Diamond (B) Graphite, (C) Lonsdaleite, (D) C60 
(Buckminsterfullerene or Bukyball), (E) C540 Fullerene, (F) C70 Fullerene, (G) Amorphous carbon, 
(H) Single-walled carbon nanotube Aqel et al. (2012) 
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3) Fullerene Composites 
The fullerene/polystyrene film composites were found to be effective against 

various bacteria like Staphylococcus aureus, E. coli and Candida albicans. The 
polystyrene film alone was however unable to exhibit such bacteriostatic properties 
while clear zone lacking microbial growth was observed in composites Alekseeva et 
al. (n.d.)These characteristics are imparted to composites by the fullerenes. In 
another research, fullerene composites with cellulose, chitosan and γ cyclodextrin 
were reported to have antimicrobial activity against vancomycin-resistant 
enterococci Duri et al.(2017) A photostable and photodynamic nanocomposite of 
fullerene (C60) was created in which fullerene C60 is covalently linked to 
ethylenedioxythiophene (EDOT) and this was found to be effective against 
Staphylococcus aureus with 99.9 % reduction in bacterial populations after visible 
light irradiations Reynoso et al. (2021). Ballatore and coworkers evaluated the 
microbial inactivation by porphyrin-fullerene C60 polymeric rings. These 
nanocomposites displayed excellent phototoxic features against S. aureus and E. 
coli. The scientist also substituted the porphyrin-fullerene C60 by carbazoyl groups. 
These modified nanocomposites were capable of inactivating S. aureus after 30 
minutes of irradiation Ballatore et al.  (2022). Thus, fullerene nanocomposites 
feature a fascinating, flexible, photodynamic and active surface that can produce 
ROS and hence can annihilate microbes. 

4) Carbon Nanotubes (CNTs) 
CNTs are graphene cylinders with diameter of unit nanometer Ibrahim et al. 

(2019).  CNTs have been predicted as metallic or semiconducting in nature Aqel et 
al. (2012), Peng et al.(2019), Obeid and Sun(2022) .CNTs are graphite sheets rolled 
in itself Figure 1 and Figure 2. These rolled sheets can be single walled or double 
walled, hence classified as below on basis of their structure: 

1) The single layer graphene sheets rolled up into cylinders (SWCNTs) 
2) The two-layergraphene concentric cylinders (DWCNTs) 
3) The multiple layered concentric cylinders known as multiwalled carbon 

nanotubes (MWCNTs). 
Figure 2 

  
Figure 2 Variable Structures of Carbon Nanomaterials (CNTs). SWCNTs: Single-Wall Carbon 
Nanotubes; DWCNTs: Double-Walled Carbon Nanotubes; MWCNTs: Multi-Wall Carbon Nanotubes. 
Azizi-Lalabadi et al. (2020). 
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CNTs are known to accelerate the transfer of electrons between electro-active 
species and electrodes Zhou et al. (2019) and proven to have elevated adsorptive 
ability Mubarak et al. (2016), conductivity Saifuddin et al.(2013) and high surface to 
volume ratio Yadav et al. (2020). The applications of CNTs in nanotechnology range 
from drug delivery, gene manipulation, tissue engineering to antimicrobial agents. 
The major fall back is insolubility of CNTs in various solvents thus limiting its usage 
which can although be altered with various modifications. The preferred methods 
for synthesis of CNTs are arc discharge process, laser ablation, chemical vapor 
deposition (CVD) and ball milling, Azizi-Lalabadi et al. (2020). Due to unique 
physical and chemical properties such as super adsorption, CNTs has been used as 
an antibacterial agent. The size of these nanomaterials plays an outstanding role in 
microbial deactivation. The further decrease in size increases their surface to 
volume ratio consequently their strong bond with cell envelopes leading to 
disruption of cellular membrane, metabolic processes and morphological structure 
Khan et al. (2016). These antibacterial properties are observed due to direct contact 
of CNTs to cell membrane which results in cell death via changes in membrane 
fluidity, oxidative stress, enzyme inhibition, and reduced transcription of several 
key genes. The antimicrobial activity of CNTs is strongly related to their aggregation 
degree, concentration, degree of purification diameter, length, surface 
functionalization and time and intensity of contact. The addition of metals and other 
supports to CNTs improves the adsorption, mechanical, optical and electrical 
properties of nanotubes. Apart from cellular destruction with decrease in size of 
CNTs the increase in cellular efflux was observed Maksimova (2019).  The other 
properties like surface area and dispersibility can be enhanced by increasing the 
number of oxygen, nitrogen and other specific groups attached to the surface Karim 
et al. (2017), Perazzoli et al.(2017), Mbiri et al. (2018). 

The first CNTs were single walled carbon nanotubes (SWNTs) and multi-walled 
carbon nanotubes were latter synthesized by Kang and co-workers in 2007. These 
CNTs effectively removed various microbial cells such as Escherichia coli, 
Micrococcus lysodeikticus, Streptococcus mutans, E. coli, Salmonella spp. cells Kang 
et al. (2007), Liu et al. (2018), Maksimova (2019). The cytotoxicity of CNTs is 
affected by the various physiochemical properties of these nanomaterials and their 
transport behaviour in the solution.  The antibacterial efficiency may vary with the 
size and diameter of CNTs, their dispersing ability in the culture medium, dosage, 
reaction time and mode of action between the bacteria and CNTs.  The workers 
further observed that the size of these particles affect their activity in 2008. Both 
SWCNTs and MWCNTs were tried against microorganisms and SWCNTs were found 
to be much more effective by reason of active surface area. The toxicity of CNTs is 
based on their contact with cell surface. Therefore, diameter of CNTs is an 
imperative factor in the microbial cell deactivation. The SWCNTs were found to be 
more toxic owing to higher surface area, better penetration into the cell because of 
smaller diameter, unique chemical and electronic characteristics and their role in 
changing the expression of stress related genes. Indeed, SWCNTs offers substantial 
number of antibacterial properties against both Gram-negative and Gram-positive 
bacteria. However, MWCNTs lag in such bacteriostatic properties. SWCNTs connect 
to cell wall thereby aggregating and thus inducing cell wall damage. The surface 
charge on CNTs is also related to antibacterial activity as the bacterial growth is 
deterred by generation of reactive oxygen species Bing et al. (2016). The 
aggregation and agglomeration between the cells is supported by van der Waals 
forces.  The higher concentration of SWCNTs proved to be highly antimicrobial 
versus Salmonella enterica and E. coli .The length of CNTs also impact the 
antimicrobial properties Yang et al. (2020). The increase in length of SWCNTs 
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increases the aggregation and antimicrobial properties. CNTs can prevent formation 
of biofilms by preventing the adherence of cells to surface. CNTs are found to be 
more beneficial against biofilms if introduced at earlier stages of biofilm production.   

Another excellent property of CNTs is adsorption. Carbon nanotubes are highly 
efficient adsorbents for organic chemicals than active carbon Pan and Xing (2008), 
Zhang et al. (2019). This is mainly due to high surface area (external surface area) 
of CNTs and their interactions with the biological contaminants Yang and Xing 
(2010). The CNTs have high adsorption capacity for bulky organic molecules 
because of their larger pores in the bundles and have more accessible adsorption 
sites than activated carbon which on the other hand contains micropores are 
inaccessible to bulky organic molecules such as many antibiotics and 
pharmaceuticals compounds Pan and Xing (2008). CNTs are also known to adsorb 
low molecular weight polar organic compounds. These nanoparticles penetrate the 
cell envelopes and thus alter the cellular mechanisms both at the molecular and 
biochemical levels. These CNT-contaminant interactions can be hydrophobic, pep 
interaction, hydrogen bonding, covalent bonding or electrostatic interactions Yang 
and Xing (2010), Dubey et al. (2021). These are excellent adsorbents with high 
adsorption specificity for various contaminants such as dichlorobenzene Wang et 
al.(2016), Zn2+ Tang and Wang (2018), Pb2+, Cu2+, and Cd2+ He et al.(2019), ethyl 
benzene Yin et al.(2020), and dyes Quirós et al.  (2015).  

The major limitation in its application is the development of CNTs which is a 
costly affair. To decrease the cost of synthesis composite nanotubes were 
synthesized. These were prepared by combining the adsorption properties of CNTs 
with magnetic properties of iron oxide, thus aiding their easy recovery and 
reusability.Apart from synthesis, their limited water dispersal decreases the 
interaction of CNTs with microbes hence might lower efficacy of CNTs Yang and Xing 
(2010), Dubey et al. (2021).   

The derivatization and attachment of functional groups to the nanoparticles 
and CNTs might change their biological effects including toxicity. The nanoparticle 
related long-term injuries can be associated with their accumulation in organs like 
lungs, liver and spleen. These are also known to cross the blood-air barriers, blood-
alveolus barrier, blood-brain barriers and blood-placenta barrier, hence causing 
major injuries. The toxicological effects include apoptosis, autophagy, inflammatory 
response and necrosis Tang and Wang (2018), Wu et al. (2021) 

5) CNT Composites 
The carbon nanomaterials composites with biopolymers and NPs like Ag, CuO, 

TiO2, ZnO have assured antimicrobial effects Ahmad et al. (2019), Azizi-Lalabadi et 
al. (2020) Carbon nanomaterials can be functionalized with various chemical groups 
that adds to dispersion capability of these materials. The powerful synergistic effect 
has been observed in CNTs composite. Dong and co-workers proved that use of Ag 
and CNT composite enhances bactericidal properties than CNT alone. This effect is 
enhanced due to their mechanisms that disrupt the cell membranes which ease the 
penetration of other nano-molecules into the cells. In another research, AgNPs 
(Silver Nanoparticles) were deposited on MWCNTs along with polyamidoamine. 
These nanocomposites induced bacteriostatic effects against S. aureus, E. coli and 
Pseudomonas aeruginosa Yuan et al. (2018). A good example of synergistic effect is 
study of CNT/poly(L-lysine) or poly (L-glutamic acid) composite film where 
population of E. coli and Staphylococcus epidermis was reduced by 90% Aslan et al. 
(2012). The composites of chitosan with CNTs were reported to be efficient against 
the removal of E.coli and Candida tropicalis. With increase in the concentration of 
CNTs the bacteriostatic properties of composites are also enhanced. These 
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composites displayed a well-defined porous structure with high water uptake and 
efficiency Xia et al. (2018). In 2019, Beningo along with co-workers conducted 
research involving low-polyethylene (LDPE)-based nanocomposites containing 
MWCNTs that exhibited remarkable antimicrobial activity against DH5α E. coli. The 
effect of these nanocomposites was also studied on biofilms. 

6) Graphene and Graphene Oxide 
Graphite is two dimensional naturally occurring crystalline carbon material or 

layers of graphene molecules lying upon one another. The carbon atoms are sp2 
hybridized in a hexagonal network forming graphite molecules. Each of graphite 
plate is connected to another by Van der Waals forces.  Geim along with coworkers 
introduced the two-dimensional graphene in 2004 that exhibits exceptionally high 
crystal and electronic quality. The graphene and graphene oxide were reported to 
have ample of applications in range of fields. The graphene oxide is an intermediate 
product of the graphene chemical synthesis. It consists of graphene molecule 
functionalized with groups such as hydroxyls, carboxyls, carbonyls and epioxides 
Geim and Novoselov (2007), Jin et al. (2020). In fact, graphene oxide (GO) and 
reduced graphene oxide (rGO) are the two products which are formed. Among 
which rGO has been reported to have strong barrier properties against He, H2, water 
vapor, NaCl and hydrofluoric acid in films. Graphene has ample applications in 
electronics, medicine and technology. The most successful application of graphene 
and its molecules has been reported in sensor technology, however antimicrobial 
applications have also been scrutinized. This antimicrobial nature of graphene and 
graphene oxide is due to superlative features such as extensive surface areas aswell 
as unique thermal, electrical and physio mechanical nature Azizi-Lalabadi et al. 
(2020).The physiochemical properties such as aggregation, arrangement mode, 
dispersibility, edges, layer numbers, shape, sheet size and surface functionalization 
affect the antibacterial nature of graphene and graphene oxide nanomaterials 
Omran and Baek (2022) 

The production of graphene and graphene oxide is simple, fast and cheap and it 
have minimal toxicity on mammalian cells Bolotin et al. (2008). The graphene and 
graphene oxide interact the cell membrane and cell wall through reactive oxygen 
species through physical demolition and chemical oxidation Akhavan and Ghaderi 
(2010), Dolati et al. (2023). The graphene-based nanomaterials have been reported 
to effectively inhibit the growth of E. coli bacteria while minimum toxicity was 
reported Hu et al. (2010). In another study, the graphene and graphene oxide sheets 
could entrap the bacterial cells and thus preventing their replication Akhavan et al. 
(2011). Khan and coworkers synthesized graphene oxide/carbon nanotube/poly 
(O-toluidine) (GO-CNT-POT) nanocomposite that was found to effective against 
Gram positive bacteria Bacillussubtilis and Gram-negative bacteria Escherichia coli. 
Graphene oxide was reported to have high antimicrobial activity than reduced 
graphene oxide particles Khan et al. (2016), Godoy-Gallardo et al. (2021). Thus, 
above mentioned allotropes of carbon can be considered as potent antimicrobial 
agents and can be used for water disinfection processes owing to high efficacy and 
low toxicity. 

 
6. METAL-NANOPARTICLES 

Microbial resistance to most of antibiotics and anti-microbial agents decreases 
the efficacy of eradication methods. So, development of new methods seems to be of 
supreme importance. Metal nanoparticles and their oxides such as silver 
nanoparticles (AgNPs), Titanium nanoparticles (Ti/ TiO2 NPs), Iron nanoparticles 
(Fe/Fe oxide NPs) and Zinc nanoparticles (Zn/ZnO NPs) have been applied as an 
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antimicrobial agent Palza (2015), Brandelli et al. (2017), Hoseinzadeh et al. (2017),  
Sánchez-López et al. (2020), Ribeiro et al. (2022). Metal precursors forms the basis 
of these metal nanoparticles. The antimicrobial efficiency and efficacy of these 
nanoparticles is governed by type of materials used for NPs preparation, facet, 
particle size and shape  Seil and Webster (2012), Roy et al. (2013), Agnihotri et al. 
(2014), Saied et al. (2022). With decrease in the particle size, the surface/volume 
ratio is increased that noticeably increases the dissolution rate, catalytic activity, 
heat treatment and mass transfer thus increasing the bactericidal effects of 
nanoparticles Shaterabadi et al. (2022). The possible mechanisms were proposed 
for antimicrobial effects of metal nanoparticles: 

(a) the free metal ions dissolute from surface of NPs leading to toxicity  
(b), via formation of reactive oxygen species (ROS) that causes oxidative stress 

Zhang et al. (2013a), Sarfraz et al. (2020), Kessler et al. (2022) 
These NPs also possess unique optical properties that aids to surface plasmon 

resonance. NPs of metals like Cu, Ag, Pt and Au have broad absorption bands in the 
visible range of the electromagnetic spectrum. These advanced optical properties of 
metal nanoparticles make them preferred choice for much research-based 
applications Khan et al. (2019). The metal nanoparticles can be functionalized with 
antibodies, peptides, RNA and DNA to target different biological systems such as 
microorganisms, protozoa and viruses. These metal nanoparticles can be classified 
on the basis of valency such as: 

 
6.1. ZERO-VALENT METAL NANOPARTICLES 
Metal based nanoparticles such as zinc, silver, iron etc. are effective methods 

for water disinfection. These metal oxides are also known to adsorb heavy metals 
and radionuclides Koeppenkastrop and De Carlo (1993), Kumar et al. (2020) 

 
6.1.1. SILVER NANOPARTICLES 

Silver nanoparticles are most common inorganic nanoparticles used as an 
antimicrobial agent against wide range of bacteria. The highly toxic Silver 
Nanoparticles (AgNPs) have been widely used for disinfection of water due to its 
good antimicrobial properties against broad range of microbes, including viruses’ 
bacteria, and fungi Homem and Santos (2011), Wols and Hofman-Caris (2012), Luo 
et al. (2014), Bag et al. (2021), Yu et al. (2022). The mechanism of antimicrobial 
action is still debatable; however, range of theories were put forth. AgNPs are 
reported to act in following ways: 

1) AgNPs triggers the release of free radicals and oxygen reactive species 
when AgNPscome in contact with the bacterial surface. These free radicals 
damage the cell membrane leading to cell death Siddiqi and Rao (2018). 

2) AgNPs are reported to adhere to the bacterial cell wall and subsequently 
penetrate it. This adherence results in structural changes within the 
membrane of cell hence magnifying its permeability to various other 
antimicrobial substances Ng et al. (2019). 

3) AgNPs are reported to release Ag+ ions on dissolution which interacts 
with the thiol groups of many vital enzymes. These interactions inactivate 
the enzymes by disrupting the thiol bonding, subsequently altering 
normal metabolic balance of the cell Wanda et al. (2017). 
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4) Another explanation of cell death by AgNPs is by their interaction with 
sulphur and phosphorus elements in DNA. This interplay results DNA 
destruction Sousa et al. (2018). 

In recent years, AgNPs have been successfully applied to the treatment of 
drinking water. The silver nanoparticles successfully eliminated S. aureus and E. 
coli. The efficiency of removal was enhanced with decrease in size of nanostructures 
and were less toxic than synthetic fungicides. The shape of AgNPs also play vital role 
in determining the antibacterial efficiency. Among various shapes such as spherical, 
rod shaped and truncated triangular, latter was found to be most effective against S. 
epidermis, Pseudomonas aeruginosa and B. megaterium due to high atom density 
surface Pal (2020). However, the direct application of these nanomaterials is limited 
because of AgNPs tend to aggregate in aqueous media Benstoem et al. (2017). These 
aggregations reduce the long-term efficiency of nanomaterials. This process has 
been proved to be more efficient and cost-effective when nanoparticles are attached 
to the filter material Gerbersdorf et al. (2015). This can be achieved bydepositing 
silver from silver nitrate by its reduction on to cellulose membranes. These AgNPs 
sheets were capable of inactivating Escherichia coli and Enterococcus faecalis in 
water samples with low silver loss from sheets. Therefore, AgNPs sheets can prove 
to be effectiveemergency water treatment solution Gavrilescu et al. (2015).  

In another study, chitosan cryogels decorated with silver nanoparticles were 
reported to have efficient bactericidal capacity against Escherichia coli and Bacillus 
subtlis Fan et al. (2018) . Silver nanoparticles immobilized in glass capillary tubes 
were used for water disinfection in fix bed reactor. The AgNPs can also be 
incorporated to polyethersulfone (PES) microfiltration membranes via chemical 
reduction. These membranes exhibited strong antimicrobial properties nearby the 
membranes, thus can have great potential for water treatment application. The 
microfiltration membranes modified with silver nanoparticles inhibits the growth 
of microbial films thus potentially increasing the biofouling resistance Yu et al. 
(2021). 

AgNPs also have been successfully applied to ceramic filters made up of clay 
and sawdust. It was also reported that colloidal AgNPs enhanced the filter 
performance for E. coli removal with rates as high as 97.8% and 100% Hennebel et 
al. (2012). The ceramic membranes exhibited remarkable household water 
disinfection properties. The membranes were capable of efficiently removing 
Escherichia coli bacteria Barbosa et al. (2016), Ali et al. (2019).  

Although the use of AgNPs appears to be attractive due to antibacterial 
properties, however the presence of these in potable water may have substantial 
health effects asthese small size nanoparticles are highly reactive species. 

 
6.1.2. IRON NANOPARTICLES 

Iron nanoparticles are extensively scrutinized among zero-valent metal 
nanoparticles as these possess excellent adsorption properties, are of low cost and 
could be easily recovered under the influence of magnetic field. The reduction 
potential of iron is low because of low standard reduction potential. Fe0 under 
aerobic conditions is oxidized by H2O or H+ to generate Fe2+ and H2, both of which 
are potentially reducing agents for contaminants. Fe2+ is further oxidized to Fe3+, 
that forms Fe (OH)3 with increase inthepH.Fe(OH)3 is a flocculent thus removes the 
contaminants. These redox reactions also generate the free radicals that have strong 
oxidizing potential for range of organic compounds Hopkins et al. (2016). 
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Hong and co-workers reported the efficient removal of E.coli with 100% 
sterilization by use of magnetic iron oxide nanoparticles immobilized with sugar 
containing poly (ionic liquid). Zaki and co-workers synthesized green iron 
nanoparticles in 2019 under aerobic and anaerobic conditions via nitrate reductase. 
These green nanoparticles were effective against algal and biofilm formations in real 
water (fresh, sea and salt) and wastewater (municipal, agricultural and industrial). 
Inanother study, PEG coated nanoparticles functionalized with antimicrobial 
peptide was found to be effective against E. coli K-12 DSM 498 and Bacillus subtilis 
with minimum inhibitory concentration of 500µm for both of the strains Zaki et al.  
(2019). 

 
6.1.3. ZINC NANOPARTICLES 

Zn has more negative reduction potential than iron thus is a stronger reductant 
compared to Fe. Hence it can be used to treat water for removal of contaminants 
from it.Fe doped ZnO nanoparticles were investigated for disinfection capability 
against multi drug resistant E.coli from river, pond and municipal tap Duri et al. 
(2017). In another study, alginate beads encapsulated with ZnO were examined for 
inactivationof Staphylococcus aureus in both synthetic and surface water and were 
reported to remove 200 cfu/ml of bacteria within70 minutes of exposure Motshekga 
et al. (2018).  

Munnawar along with co-workers in 2017 scrutinized antifouling 
polyethersulfonate membranes for water disinfection with fabricated Chitosan Zinc 
oxide hybrid nanoparticles. The membranes were obtained to have significant 
antibacterial aswell as antifungal properties due to synergistic effect of chitosan and 
ZnO against range of bacteria and fungi such as S. aureus, B. cereus, E. coli, S. typhi 
and A fumigatus.  

 
6.2. METAL OXIDES NANOPARTICLES 
6.2.1.  TIO2 NANOPARTICLES 

Figure 3  

  
Figure 3 Mechanisms of Antimicrobial Activity of Nanoparticles (B). Nanoparticles Generate free 
Radicals that Causes Oxidative Stress (i.e., ROS) (A). The ROS Destroy the Morphological Structure 
of Cell by Efflux of Cell Materials Sharmin et al. (2021) 
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The crystal structure, size and shape impart the antimicrobial activity to TiO2 

nanoparticles. The NPs create oxidative stress by generating reactive oxygen species 
(ROS) such as hydroxyl radicals and hydrogen peroxide that causes the site-specific 
DNA damage Zhang et al. (2013b), Maksimchuk et al. (2020). The spores, 
particularly bacterial endospores, fungal spores and protozoan cysts, in resting 
stages and are more resistant due to increased cell wall thickness. The cell death by 
TiO2 nanoparticles involves the degradation of cell wall and cytoplasmic 
membranes by ROS which initially leads to efflux of cellular contents which may be 
followed by complete mineralization of the cell. The mechanism involves 
photoexcitation of TiO2 surface to generate electron-hole pairs that migrate to TiO2 
surface Mohammed Sadiq et al. (2010). The photogenerated holes in TiO2 can react 
with adsorbed water or hydroxylions at the catalyst/water surface to produce the 
highly reactive hydroxyl ions and electrons that react with oxygen to form 
superoxide ions. The mechanism of action is depicted in Figure 3. 

The wide range of micro-organisms such as Gram-positive and Gram-negative 
bacteria, fungi, algae, protozoa and viruses can be removed by photocatalytic 
degradation. The presence of catalyst along with light trigger the oxidation 
eventually transforming these into CO2 and H2O. TiO2 has high photo-catalytic 
activity and photostability hence most widely preferred photocatalyst among 
various semi-conductors. It is also reported to has good chemical and biological 
stability Chauhan et al. (2019), Ibrahim et al. (2019), Zhang et al. (2019). The TiO2 
absorbs in ultraviolet region. This absorption generates reactive oxygen species 
(ROS) which act upon the microbes. However, this absorption in UV-region is the 
limiting factor for nanoparticles. Thus, research has been conducted to improve the 
photocatalysis in the visible range was reported to be enhanced by metal doping 
which inactivated the bacteriaand viruses Adeleye et al. (2018), Peng et al. (2019). 
For example, among metal doping, Ag has been widely studied and it improves the 
visible light absorbance of TiO2 NPs Anirudhan and Deepa (2017), Zhao et al. 
(2018). Another report of C-TiO2 nanoparticles synthesized by sol gel methods 
photochemically inactivated Listeria monocytogenes Shim et al. (2016), Piatkowska 
et al. (2021). Some nonmetals elements such as N, F, S and C have also been reported 
to narrow the band gap significantly, enhancingthe adsorption in visible region 
Fahiminia et al. (2019), Wang et al. (2021). Also, H2O2titanium dioxide suspensions 
have been used against Staphylococcus epidermis biofilms disinfections. 

Besides, the production process for TiTO2 based Nanoparticles is rather 
difficult, hence these should be recovered from wastewater. These particles can be 
coupled to membranes such as poly(vinylidene fluoride) Park et al. (2018), Huang 
et al. (2019), Yang et al. (2020), polyethersulfone Fang et al. (2017), Park et al. 
(2018), polymethyl methacrylate, and poly(amide-imide) Zhang et al. (2018), 
Pandiyan et al. (2019). This coupling of NPs to membranes aids in its separation by 
simple filtration processes. Another solution to this problem is by doping magnetic 
nanoparticles which can be trapped by magnetic traps Coker et al. (2012), Akhil et 
al. (2016), Stueber et al. (2021). 

 
6.2.2. ZNO NANOPARTICLES 

ZnO NPs have strong oxidation ability and photocatalytic property Fakhriet al. 
(2018), Trawiński and Skibiński(2019) making them one of the preferred choices 
for water treatment. These are eco-friendly as they are compatible with organisms 
Islam et al. (2018).  Both TiO2 and ZnO NPs have similar band gap energies but latter 
ones have low cost over the other. Being similar to TiO2 NPs the light absorption is 
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limited to ultraviolet region. Besides, they have low photocatalytic efficiency as 
these might be impeded by photocorrosion (Nogueira et al., 2018). This can be 
greatly enhanced by metal doping with various types of   anionic dopants, cationic 
dopants, rare-earth dopants, and codopants Nogueira et al. (2015), Lee et al.(2016). 
Also, coupling with other semiconductors, such as CdO, CeO2, SnO2, TiO2, graphene 
oxide (GO), and reduced graphene oxide (RGO), has also been reported to enhance 
the photocatalytic efficiency of ZnO NPs Lee et al. (2017) , Xiang et al. (2017), Jiao et 
al. (2018), Li et al. (2018), Neamtu et al. (2018), Zhao et al. (2018), Zheng et al. 
(2022). 

The Zinc Oxide (ZnO) is safe for human skin which make it proper additive in 
water disinfection Schilling et al. (2010); Ayyaru et al. (2020), Deka et al. (2022). Li 
and workers in 2018, reported antibacterial effects of ZnO on gram-positive and 
gram-negative bacteria as well as on high temperature and pressure resistant 
spores.The antibacterial efficiency is enhanced by concentration increase and size 
reduction The vi Rasheed et al.(2020)ability of microbes is believed to be decreased 
by one of the following mechanisms. One proposed is generation of H2O2 particles 
while another study reported the accumulation of nanoparticles on the bacterial cell 
surface due to electrostatic effects Hussein et al. (2019). The other reasons being the 
ROS generation from the surface of the particles, zinc ion release, membrane 
dysfunction and nanoparticle internalization. ZnO NPs have bacteriostatic effects 
against wide range of bacteria such as P. aeruginosa, L plantarum, L. monocytogenes 
E. coli, S. choleraesuis, S. aureus, Saccharomyces cerevisiae, A. niger, C jejuni  Xie et 
al. (2020), da et al. (2019), Gudkov et al. (2021) 

  
6.2.3. IRON OXIDES NANOPARTICLES 

The ease of recovery duetomagnetic properties of iron it is also preferred for 
water treatment processes. The iron oxides such as magnetic magnetite (Fe3O4) 
and magnetic maghemite (γ-Fe2O4) and nonmagnetic hematite (α-Fe2O3) can be 
used as nanoadsorbents for heavy metals. The recovery of small sized nanosorbent 
NPs can be easily assisted with external magnetic field Chen and Li (2016), Sharma 
and Feng (2019), Rasheed et al. (2020) 

Ferrate based nanoparticleswith physiochemical properties like oxidatioin, co-
agulation and disinfection were studied for elimination of diverse range of chemical 
and biological species from, water/waste water samples Rai et al. (2018) . In another 
study, iron oxide nanoparticles have been functionalized with range of ligands such 
as ethylenediamine tetraacetic acid (EDTA), L-glutathione (GSH), mercaptobutyric 
acid (MBA), α-thio-ω-(propionic acid) hepta(ethylene glycol) (PEG-SH), and meso-
2,3-dimercaptosuccinic acid (DMSA) Rojas and Horcajada (2020) or polymers (e.g., 
copolymers of acrylic acid and crotonic acid) Ma et al. (2019) that are reported to 
enhance their adsorption efficiency. The ligand polymers form a flexible shell that 
facilitates the incorporation of various functional groups. This shell prevents the 
aggregation of particles and improves the dispersion stability of nanostructures 
Zeng et al. (2015). The polymer molecules not only ensure the intactness of 
properties of Fe3O4 nanoparticles but also binds with the metal ions thus acting as 
carriers of metals Ma et al. (2019). 

Among various iron oxide nanoparticles, hematite is stable and cheap thus can 
be used in catalysis and sensors Zeng et al. (2015). Nanohematite particles have 
been reported to be an effective adsorbent from heavy metal spiked tap water.The 
enhanced surface area with multiple spaces and pores was reported in flower-like 
α-Fe2O3 structures. This aided in better removal of As (V) and Cr (VI) from water 
than previous studies Wang et al. (2018). 
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7. CERAMIC BASED NANOMATERIALS 

Ceramic based nanoparticles are synthesized from nonmetallic solids via heat 
and successive cooling Sigmund et al. (2006), Punia et al. (2021). These are 
amorphous, polycrystalline, dense, porous or hollow structure have been 
successfully applied to catalysis, photocatalysis, photodegradation Thomas et al. 
(2015), Vinayagasundaram et al.(2023). These ceramic based nanoparticles can be 
used for water disinfection processes. 

 
8. NANOMATERIALS WITH SEMICONDUCTING PROPERTIES 

Semiconducting materials possess properties of both metals and non-metals. 
Semiconductors possess wide bandgaps and therefore were reported to show 
significant alteration in their properties with bandgap tuning. These can be thus 
proveto be landmark for futuristic water disinfection processes. 

 
9. POLYMERIC NANOPARTICLES 

These polymeric nanoparticles are organic based NPs that are mostly 
nanospheres or nanocapsular in shape Zielińska et al. (2020). The nanospheres have 
solid matrix particles with other molecules adsorbed at the outer spherical surface 
while in nanocapsule the solid mass is encapsulated within the particle Rao and  
Geckeler (2011), Sharma et al. (2020).These PNPs can be functionalized and thus 
have multiple application.  In one such study, macroporus methacrylic acid 
copolymer beads were prepared with silver nanoparticles adsorbed to its surface. 
These polymeric molecules were tested to be effective against both gram-positive 
and gram-negative bacteria Zaharia et al. (2022). 

 
10. NANOCOMPOSITES 

The various drawbacks of nanomaterials can be overcome by synthesizing the 
composites of nanoparticles where mixing of two or more nanomaterials are 
combined for different properties. For example, the chemical deposition of nZVIon 
CNTs imparted good adsorbent properties and magnetic properties adding to both 
efficiency of contaminant (nitrate) removal and recovery of nanocomposites 
Awasthi et al. (2019). 

Utilization of spinel ferrite nanocomposites (SFNCs) for water purification 
either as   photocatalyst or as an adsorbent is considered as one of the best cost-
effective, ecofriendly and simple technology Kefeni et al. (2017). The application of 
chitosan nanocomposites has also been extensively studied, for their efficiency in 
treating wastewater as they are good chelating agents, absorbents and support 
other nano size particles. Chitosan nanocomposites possess remarkable 
antimicrobial, biodegradable and non-toxic properties Babaei et al. (2021).  

Copper ferrite nanocomposites (CuFe2O4) have also attracted the attention of 
many researchers due to their potential application in water treatment. CuFe2O4 is 
an important spinel ferrite, because of its capability to change its physical 
characteristics, which range from magnetic, electrical, electrical switching and 
semiconducting properties when they are exhibited under different experimental 
conditions. CuFe2O4 nanocomposites possess good magnetic properties and are 
stable under various environmental states. The overall cost of the water treatment 
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process is lowered by the use of CuFe2O4 nanocomposites, as they require visible 
light as an energy source and can also be reused many times Hosseini et al.(2022). 

In last few years, extensive research has been conducted to develop efficient 
and selective polymeric membranes and adsorbents. Polymeric nanocomposites 
consist of nanoparticles dispersed in polymeric matrices such as cellulose, resins, 
dendrimer, etc., to improve their physicochemical, thermophysical, and mechanical 
properties. Polymer nanocomposites can be developed by using various methods, 
and the most prevalent techniques are in-situ polymerization, melt-mixing, mixing, 
selective laser sintering and electrospinning. Polymer nanocomposites are applied 
as adsorbents and filtering membranes to remove chemical impurities from 
aqueous media Adeol and Nomngongo (2022). The synthesis of clay polymer nano- 
composites (CPNs), is becoming famous because it combines the beneficial 
attributes of both clay minerals and polymers in a single adsorbent. CPNs possesses 
numerous applications in various industries, including water decontamination 
Awasthi et al. (2019).  

Nanostructured sorbents also possess great potential for the removal of 
contaminants from the wastewater. The research is now focused on the 
development of polymer nanocomposites (PNCs), which have increased their 
efficiency in pollution remediation. Many chemical contaminants, such as heavy 
metals, hydrocarbons and dyes, have been removed from polluted water using 
polymer nanocomposites. Both natural as well as synthetic polymers can be utilized 
for the development of PNCs. Natural polymers include wool, cellulose, proteins and 
silk. Synthetic polymers consist of polyester, polyethylene, epoxy and teflon.  

Nanotechnology have shown great promise in the laboratory studies however 
its commercialization is the real task. Full scale commercialization of nanoparticles 
requires significant amount of research 

 
11. CONCLUSION 

Nanotechnology for water and wastewater treatment is gaining momentum 
globally. The unique properties of nanomaterials and their convergence with 
current treatment technologies present great opportunities to revolutionize water 
and wastewater treatment. Although many nanotechnologies highlighted in this 
review are still in the laboratory research stage, some have made their way to pilot 
testing or even commercialization. Thus commercialization of these technologies is 
real task and full scaling requires significant amount of research. 

Despite of superior performance, the adoption of nanoparticles for water 
disinfection must overcome the technical hurdles cost effectiveness and potential 
environment and human risk. The cost effectiveness can be improved by retaining 
and reusing the nanoparticles or using low purity nanomaterials with equivalent 
efficiency Qu et al. (2013). The existing infrastructure must be compatible with the 
new technologies such as nanotechnology. 

Among them, three categories show most promise in full scale application in 
the near future based on their stages in research and development, commercial 
availability and cost of nanomaterials involved, and compatibility with the existing 
infrastructure: nano-adsorbents, nano-technology enabled membranes, and nano-
photocatalysts Anjum et al. (2019). The use of nanomaterials for disinfection of 
water processes or waste-water treatment is restricted by the limited performance 
of various nanotechnologies in testing the real natural or waste waters. Future 
research needs more realistic conditions that can assess the application of 
nanomaterials at commercial scale. Another aspect of nanotechnology-based 
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applications for water disinfection is limited due to limited research on long term 
effects of these nanoparticles on the flora and fauna present in water Vukoje et al. 
(2014). 

The challenges faced by water/wastewater treatment nanotechnologies are 
important, but many of these challenges are perhaps only temporary, including 
technical hurdles, high cost, and potential environmental and human risk Kumari et 
al. (2019). To overcome these barriers, collaboration between research institutions, 
industry, government, and other stakeholders is essential. It is our belief that 
advancing nanotechnology by carefully steering its direction while avoiding 
unintended consequences can continuously provide robust solutions tour 
water/wastewater treatment challenges, both incremental and revolutionary 
Hossain and Hossain (2021). 
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