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ABSTRACT 
Since ancient times, mathematicians across the world have worked on different methods 
to find the sum of powers of natural numbers. In this paper, we are going to present the 
relationship between sum of kth powers of natural numbers and sum of (k–1) th powers 
of natural numbers using the differential operator and associated recurrence relation. 
Interestingly, the Bernoulli numbers which occur frequently in mathematical analysis, 
play an important role in establishing this relationship. 
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1. INTRODUCTION 
1.1. DEFINITION  
Let us denote the sum of kth powers of first n natural numbers by  
 
 𝑆𝑆𝑘𝑘(𝑛𝑛) = 1𝑘𝑘 +  2𝑘𝑘 + ⋯+  𝑛𝑛𝑘𝑘                                                                                                      (1) 
 
We notice that, 𝑆𝑆0(𝑛𝑛) = 𝑛𝑛 
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1.2. DIFFERENTIATION OF 𝑺𝑺𝒌𝒌(𝒏𝒏) FOR K ≥ 0  
In view of formulas presented in Senthil et al. (2014) , we know that 𝑆𝑆𝑘𝑘(𝑛𝑛) is a 

polynomial in n of degree k + 1. Hence 𝑆𝑆𝑘𝑘(𝑛𝑛) is differentiable for each k ≥ 0. We now 
differentiate 𝑆𝑆𝑘𝑘(𝑛𝑛) for few values of k to notice some pattern.   

 
For k = 0, we know that 𝑆𝑆0(𝑛𝑛) = 𝑛𝑛 
 

Hence,  𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑆𝑆0(𝑛𝑛)) = 1                                                                                                            (2) 

 

Now, for k = 1, 𝑆𝑆1(𝑛𝑛) = 1 +  2 + ⋯+  𝑛𝑛 = 1
2
 n2 +  1

2
 n 

 
Differentiating and simplifying we get  
 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑆𝑆1(𝑛𝑛)) = n +  1
2
  = 𝑆𝑆0(𝑛𝑛) +  1

2
                                                                                                     (3) 

 

For k = 2,  𝑆𝑆2(𝑛𝑛) = 12 +  22 + ⋯+  𝑛𝑛2 =  1
6
 n +   1

2
 n2 + 1

3
  n3   

 
Differentiating and simplifying we get  
 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑆𝑆2(𝑛𝑛)) =  1
6
  + n + n2 = 2𝑆𝑆1(𝑛𝑛) +  1

6
                                                                                         (4) 

 

For k = 3, 𝑆𝑆3(𝑛𝑛) = 13 +  23 + ⋯+  𝑛𝑛3 =  1
4
 n2  + 1

2
 n3  + 1

4
 n4  

 

Differentiating and simplifying we get  
 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑆𝑆3(𝑛𝑛)) =  1
2
 n  + 3

2
 n2  + n3  = 3𝑆𝑆2(𝑛𝑛)                                                                         (5) 

 

For k = 4,  𝑆𝑆4(𝑛𝑛) = 14 +  24 + ⋯+  𝑛𝑛4 = − 1
30

 n+ 1
3
 n3 + 1

2
 n4  + 1

5
 n5  

 
Differentiating and simplifying we get  
 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑆𝑆4(𝑛𝑛)) = − 1
30

+ n2 + 2n3 + n4  = 4𝑆𝑆3(𝑛𝑛) −  1
30

                                                   (6) 
 

By observing equations from (3) to (6), we could see that differential of sum of 
kth powers of natural numbers is equal to k times sum of (k–1)th powers of natural 
numbers plus a constant. But what are those constants? To see this, we make the 
following definition.  
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1.3. DEFINITION OF BERNOULLI NUMBERS  

Bernoulli Numbers are numbers which occur as coefficients of 
!

nx
n

 in the 

Taylor’s series expansion of 
1x

x
e −

 about x = 0. We denote the nth Bernoulli Number 

by nB . For knowing more about Bernoulli numbers and their properties see 
Sivaraman (2020)    

 

Thus, by definition we get 𝑥𝑥
𝑒𝑒𝑥𝑥−1

= ∑ 𝐵𝐵𝑑𝑑
𝑥𝑥𝑛𝑛

𝑑𝑑!
∞
𝑑𝑑=0                                                                 (7) 

 

We notice that the constant term of 
1x

x
e −

 is 1 and so we obtain 0 1B = .  

 
In view of Sivaraman (2020), we know that the Bernoulli numbers satisfy the 

equation 
  

∑ �𝑛𝑛 + 1
𝑗𝑗 �𝑑𝑑

𝑗𝑗=0 𝐵𝐵𝑗𝑗 = 0                                                                                                                 (8) 

 
Using the fact that B0 = 1 and (8), the first few Bernoulli numbers are given by  
 

                                                    
𝐵𝐵0 = 1,𝐵𝐵1 = ± 1

2
,𝐵𝐵2 = 1

6
,𝐵𝐵3 = 0,𝐵𝐵4 = − 1

30
,𝐵𝐵5 = 0,𝐵𝐵6 = 1

42
,𝐵𝐵7 = 0,𝐵𝐵8 = − 1

30
,𝐵𝐵9 = 0

𝐵𝐵10 = 5
66

,𝐵𝐵11 = 0,𝐵𝐵12 = − 691
2730

,𝐵𝐵13 = 0,𝐵𝐵14 = 7
6

,𝐵𝐵15 = 0,𝐵𝐵16 = −3617
510

, . . .
�   (9)    

 
1.4. CONSTRUCTION OF FAULHABER’S TRIANGLE         
We now construct a triangle of numbers whose entries are denoted by T(p,q) 

where q = 0,1,2,3,…,p. Here p denote the row beginning from 0 and q denote the 
column beginning with 0 and ending with p for given value of  p.  The entry of row 0 
should be 1. That is, T(0,0) = 1. Assuming that row p – 1 is known, the entries in the 
pth row is given by the formula  

 

𝑇𝑇(𝑝𝑝, 𝑞𝑞) = 𝑇𝑇(𝑝𝑝 − 1, 𝑞𝑞 − 1) ×
𝑝𝑝

𝑞𝑞 + 1
                                                                                   (10) 

  
Equation (10) is used to compute T(p,1) up to T(p,p).  
The entries in the pth row, first column is calculated in such a way that the row 

sum is always 1. That is, we should have  
 

                                                                             𝑇𝑇(𝑝𝑝, 0) = 1 −�𝑇𝑇(𝑝𝑝, 𝑞𝑞)                                                                                               (11)
𝑝𝑝

𝑞𝑞=1
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Equations (10) and (11) are used to construct the following triangle up to first 
eleven rows.   
Figure 1 

 
Figure 1 Faulhaber Triangle 

 
From (9) and column 0 of Figure 1, we notice that T(k,0) = Bk, where Bk is the 

kth Bernoulli number.  For knowing more about Faulhaber’s Triangle and its entries 
see Sivaraman (2020).  

 
Generalizing equations (3) to (6), I now prove the following important theorem.  
 

1.5. THEOREM 1  
If 𝑆𝑆𝑘𝑘(𝑛𝑛) is sum of kth powers of natural numbers, then 
 

  𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑆𝑆𝑘𝑘(𝑛𝑛)) = 𝑘𝑘𝑆𝑆𝑘𝑘−1(𝑛𝑛) + 𝐵𝐵𝑘𝑘                                                                                                (12)  

 
where Bk is the kth Bernoulli number.   
 
Proof: In view of Faulhaber’s Formula presented in Sivaraman (2020), we 

notice that  
 

𝑆𝑆𝑘𝑘(𝑛𝑛) = 𝑑𝑑
𝑘𝑘+1

𝑘𝑘+1
 + 𝑑𝑑

𝑘𝑘

2
 + 𝑘𝑘.𝑑𝑑𝑘𝑘−1

12
 + 𝑐𝑐𝑘𝑘−3𝑛𝑛𝑘𝑘−3+ 𝑐𝑐𝑘𝑘−5𝑛𝑛𝑘𝑘−5+...+𝑐𝑐2𝑛𝑛2+ 𝑐𝑐1𝑛𝑛                                      (13)  

 
Differentiating the expression on both sides of (13) and simplifying we get 
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𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑆𝑆𝑘𝑘(𝑛𝑛)) =  1  
𝑘𝑘+1

 (𝑘𝑘 + 1)𝑛𝑛𝑘𝑘+1 
2

 𝑘𝑘𝑛𝑛𝑘𝑘−1+𝑘𝑘 
12

 (𝑘𝑘 − 1)𝑛𝑛𝑘𝑘−2+𝑐𝑐𝑘𝑘−3(𝑘𝑘 − 3)𝑛𝑛𝑘𝑘−4    

+ 𝑐𝑐𝑘𝑘−5(𝑘𝑘 − 5)𝑛𝑛𝑘𝑘−6 + ⋯+ 𝑐𝑐3(3𝑛𝑛2) + 𝑐𝑐2(2𝑛𝑛) +  𝑐𝑐1 
 

=  𝑘𝑘 �
𝑑𝑑
𝑘𝑘

𝑘𝑘
+ 1 

2
𝑛𝑛𝑘𝑘−1 +  1

12
(𝑘𝑘 − 1)𝑛𝑛𝑘𝑘−2 + 𝑐𝑐𝑘𝑘−3

(𝑘𝑘−3)
𝑘𝑘

𝑛𝑛𝑘𝑘−4

+𝑐𝑐𝑘𝑘−5
(𝑘𝑘−5)
𝑘𝑘

𝑛𝑛𝑘𝑘−6 + ⋯+ 𝑐𝑐3
3
𝑘𝑘
𝑛𝑛2 + 𝑐𝑐2

2
𝑘𝑘
𝑛𝑛

� + 𝑐𝑐1                                 (14) 

 

But from (13), we notice that  
 

𝑆𝑆𝑘𝑘−1(𝑛𝑛) = 1𝑘𝑘−1 +  2𝑘𝑘−1 + ⋯+  𝑛𝑛𝑘𝑘−1  
 

   =  𝑑𝑑
𝑘𝑘

𝑘𝑘
 + 𝑑𝑑

𝑘𝑘−1

2
 + (𝑘𝑘−1).𝑑𝑑𝑘𝑘−2

12
 + 𝑏𝑏𝑘𝑘−4𝑛𝑛𝑘𝑘−4+ 𝑏𝑏𝑘𝑘−6𝑛𝑛𝑘𝑘−6+ … + 𝑏𝑏2𝑛𝑛2+ 𝑏𝑏1𝑛𝑛                           (15) 

 
We now notice that the coefficients in 𝑆𝑆𝑘𝑘(𝑛𝑛) and 𝑆𝑆𝑘𝑘−1(𝑛𝑛) in terms of entries of 

Faulhaber’s Triangle are given by  
 

𝑐𝑐𝑚𝑚 = 𝑇𝑇(𝑘𝑘,𝑚𝑚 − 1)(16), 𝑏𝑏𝑚𝑚 = 𝑇𝑇(𝑘𝑘 − 1,𝑚𝑚 − 1)                                                               (17) 
 
Now using (10), (16) and (17), we deduce the following 
  

𝑏𝑏𝑘𝑘−4 = 𝑇𝑇(𝑘𝑘 − 1, 𝑘𝑘 − 5) = 𝑇𝑇(𝑘𝑘, 𝑘𝑘 − 4) ×
𝑘𝑘 − 3
𝑘𝑘

= 𝑐𝑐𝑘𝑘−3 ×
𝑘𝑘 − 3
𝑘𝑘

𝑏𝑏𝑘𝑘−6 = 𝑇𝑇(𝑘𝑘 − 1, 𝑘𝑘 − 7) = 𝑇𝑇(𝑘𝑘, 𝑘𝑘 − 6) ×
𝑘𝑘 − 5
𝑘𝑘

= 𝑐𝑐𝑘𝑘−5 ×
𝑘𝑘 − 5
𝑘𝑘

. . . . . . . . . . . . . .

𝑏𝑏2 = 𝑇𝑇(𝑘𝑘 − 1,1) = 𝑇𝑇(𝑘𝑘, 2) ×
3
𝑘𝑘

= 𝑐𝑐3 ×
3
𝑘𝑘

𝑏𝑏1 = 𝑇𝑇(𝑘𝑘 − 1,0) = 𝑇𝑇(𝑘𝑘, 1) ×
2
𝑘𝑘

= 𝑐𝑐2 ×
2
𝑘𝑘

𝑐𝑐1 = 𝑇𝑇(𝑘𝑘, 0) = 𝐵𝐵𝑘𝑘 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

                          (18) 

 
Substituting (15) and (18) in (14), we get  
 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑆𝑆𝑘𝑘(𝑛𝑛)) = 𝑘𝑘 � 𝑑𝑑
𝑘𝑘

𝑘𝑘
 +  𝑑𝑑

𝑘𝑘−1

2
 +  (𝑘𝑘−1).𝑑𝑑𝑘𝑘−2

12
 +  𝑏𝑏𝑘𝑘−4𝑛𝑛𝑘𝑘−4 +  𝑏𝑏𝑘𝑘−6𝑛𝑛𝑘𝑘−6 +  … +

                            𝑏𝑏2𝑛𝑛2 +  𝑏𝑏1𝑛𝑛� + Bk 

Hence, we obtain 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑆𝑆𝑘𝑘(𝑛𝑛)) = 𝑘𝑘𝑆𝑆𝑘𝑘−1(𝑛𝑛) + 𝐵𝐵𝑘𝑘 

 
This completes the proof.  
 
2. CONCLUSION  

In this paper, using the concepts of Bernoulli numbers and Faulhaber’s 
Triangle, we have provided a novel method by proving a theorem that the derivative 
of sum of kth powers of first n natural numbers is k times the sum of (k – 1)th powers 
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of first n natural numbers plus the kth Bernoulli number. This differential recurrence 
relation between successive powers of sum of first n natural numbers is very 
important in the sense that it helps us to obtain 𝑆𝑆𝑘𝑘(𝑛𝑛) knowing 𝑆𝑆𝑘𝑘−1(𝑛𝑛) and 
Bernoulli numbers. 
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