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ABSTRACT 
A three parameter continuous probability distribution Modified Inverse Generalized 
Exponential Distribution: Model and Properties, is introduced in this article.  To study the 
properties of the introduced model, probability distribution, density, survival and hazard 
rate functions are introduced. A data of real life is used for checking the application. Some 
important methods of estimation are used for estimation of the constants.  Model 
validation is checked using Akakie’s information, Bayesian Information, Corrected 
Akaike’s information and Hannan Qiunan Information Criteria as well as by plotting the 
P-P and Q-Q plots. For testing the goodness of fit Kolmogrov Smirnov test, Anderson 
darling test and Cramer-von Mises test are used. All the data analysis is performed using 
R-language programming. 
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1. INTRODUCTION 
Use of probability model is not limited to statistics only. Statistics has broad 

application in all the fields of study like applied science, management and economics 
etc. Since probability distribution has numerous use and applications, it is being 
modified and generalizing day by day. Probability distribution helps to simulate the 
real life conditions and to analyze, interpret, and summarize the real life data 
precisely and effectively and economically in very less time. In literature many new 
probability models are available that are formulated based on our present 
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requirement of the data analysis. These techniques of introducing new distribution 
may be by adding some extra parameters to distribution, merging the distribution 
or inverting the variables etc. These methods make new distribution more flexible 
and useful than the existing distributions. Literature contains various models for 
studying the nature and potentiality of the data; still we need new models to explain 
the new emerging data more precisely. That is in all the cases, classical techniques 
are not effective as the new distributions. New family of distributions play important 
role to generalize different models by compounding to well known distribution for 
introducing suitable models having extra features and properties to handle the 
variety of data used in theory as well as in practical life Usman et al. (2017) 

 Availability of statistical models for studying statistical data is not limited. It is 
getting introduced new model frequently that can explain various type of data with 
more precise results. This research is focused on construction of new parametric 
statistical model. One of methods of getting new model is by introducing extra 
parameters to existing distribution such as Weibull and exponential family of 
distribution Marhall & Olkin (1997). Extension of Lomax distribution applying 
family of Marshall and Olkin model Ghitany et al. (2007) is available in literature.  
McDonald Lomax model Lemonte & Cordeiro (2013) has been obtained by Lomax 
distribution. Power Lomax distribution containing three constants is more flexible 
than existing Lomax distribution. This model has inverted bathtub as well as 
increasing and decreasing bathtub hazard rate function Rady et al. (2016).  Model 
defined has increasing, decreasing and bathtub shaped hazard curve. Exponentiated 
Weibull Lomax distribution is formulated using exponentiated Weibull-G-family 
Hassan & Abd-Allah (2018). By taking alpha as an exponent, a new distribution 
called alpha power inverted exponential was introduced by Ceren et al. (2018) by 
use of inverted exponential model. Lomax random variable was used as generator 
by Ogunsanya et al. (2019) in formulating Type III Odd Lomax exponential model. 
Compounding of inverted Lomax model with odd generalized exponential model 
results a new distribution called Odd generalized exponentiated Inverse Lomax 
model given by Maxwell et al. (2019). Lomax exponential distribution has increasing 
and decreasing hazard rate given by Ijaz & Asim (2019) which was formulated using 
Lomax distribution. Similarly, inverse Lomax- exponentiated G- family Falgore & 
Doguwa (2020) is based on Inverse Lomax distribution as generator.  

In real life, numerous life time variables are available that may have shape of 
bathtub hazard rate function. There are many models in literature having bathtub 
shaped hazard rate curve also. We can get modification of Weibull distribution to 
get many modified models. Expression below is Weibull distribution having two 
parameters.  

[ ( , )]( , , ) yF z e
βλλ β −=   

 
The hrf of the above model is not bathtub. Many modifications have been 

performed on this model resulting new model having bathtub hrf. Exponentiated 
Weibull model introduced by Mudholkar & Srivastava (1993) is well known 
modification of Weibull distribution. Lai et al. (2016) introduced new lifetime 
distribution using suitable limits on beta integrated distribution as 

( )[ . ]( )
b yay eF y e

λ
=   

 
Alqallaf & Kundu (2020); has introduced inverse generalized exponential 

distribution having two parameters having CDF and PDF as 
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( ) ( ), , 1 1 exp( / )G x x αα λ λ= − − − ;( , ) 0, 0xα λ > >   

( ) ( )
12 /( ; , ) 1 ; , 0, 0x xg x e x e x

αλ λα λ αλ α λ
−− − −= − > >

 
 
We can add an extra parameter α to modify Inverse generalized exponential 

distribution as to get new distribution called Modified Inverse Generalized 
Exponential (MIGE) Model. The cdf and pdf of MIGE model can be given as 

 

              ( ) ( )1; , , 1 1 exp ;( , , ) 0, 0xF x x e x
αβα β λ λ α β λ− − = − − − > >  

  

and 
 

( ) ( ) ( ) 11 1
2( ; , , ) 1 exp 1 exp ; 0x xf x x x x e x e x

x

αβ βαλα β λ β β λ λ
−− − − − = + − − − − >  

 

 
The whole study is studied dividing in different section. First section is 

introductory where introduction and literature review is mentioned. In second 
section model formulation and some important properties are mentioned. Next 
section contains the parameter estimation techniques, Application to real data set 
and Model comparison. Final section is the conclusion of the study. 

 
2. MODEL ANALYSIS 

Modified Inverse Generalized Exponential (MIGE) distribution: 
A three parameters MIGE distribution has CDF as,   
 

( ; , , ) 1 1 exp ; ( , , ) 0, 0xF x e x
x

α
βλα β λ α β λ−   = − − − > >      

                            (1) 

 
The PDF MIGE distribution can be expressed as, 
 

( ) ( ) ( )12( ; , , ) 1 1 exp exp ; 0x x
x xf x x x e x e x

αβ βλ λα β λ αλ β β
−− − − = + − − − − >  

  (2) 

 
The Reliability:  
Reliability function of MIGE is  

    
( ; , , ) 1 exp ; ( , , ) 0, 0

xeR x x
x

αβλα β λ α β λ
−  −

= − > >      
                 (3) 

 
Hazard rate of model:  
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Expression (4) is the hazard rate function of the model  
 

( )
( ) ( ) ( ) 1

2 1 exp 1 exp
;  0

1 1 exp

x x
x x

x

x x e e
xh x x

e
x

αβ βλ λ

α
β

αλ β β

λ

−− −

−

 + − − − −  
= < < ∞

  − − −    

                            
(4) 

 
Reverse hazard function: 
The reverse hazard function of MIGE is, 
 

( ) ( )( ) ( )( )12( ) 1 1 e  xp exp 1  ex  px x x
rev x xh x x x e x e e

x

αα
β β βλ λ λαλ β β

−−
− − − −    = + − − − − − −              

(5)
        

 
Figure 1 displays hazard rate curve and pdf curve of MIGE ( ), ,α β λ with 

different parameters. From pdf plot it is clear that the density plot for different 
values of parameter are of different shape. Hazard rate curve is increasing and 
decreasing or inverted bathtub shaped based on set of parameters. 
Figure 1 

    
Figure 1 PDF and HRF plots of MIGE Distribution 

 
Cumulative hazard rate: 
Cumulative hazard rate of the MIGE ( ), ,α β λ is  

 

  ( ) [ ]

( )
.

1

1

        log 1 ( )

log 1 exp ; 0, 0, 0, 0x

H x F x

e x x
αβλ α β λ

−

− −

= −

 = − − − > > > >  

            

(6)  

 
The Quantile function: 
The Quantile function is given by 
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( ){ }(1/ )log 1 1 0 ; 0 1.xe p p
x

αβλ − + − − = < <
 

( ){ }(1/ )log log 1 1 log( / ) 0 ; 0 1.p x x pα β λ − − − + = < <    
 
Generation of random deviate: 
Let u follows uniform distribution then generation of random deviate of MIGE 

( ), ,α β λ is, 

 ( ){ }.

(1/ )log 1 1 0 ; 0 1.xe u u
x

αβλ − + − − = < <                                 (7) 

 

( ){ }(1/ )log( ) log( ) log log 1 1 0 ; 0 1.x x u uαλ β  − − + − − = < <    
 
We have also defined skewness as well as kurtosis based on quantiles Al-saiary 

et al. (2019) as, 

 ( ) ( ) ( )
( ) ( )

0.75 2 0.5 0.25
0.75 0.25B

Q Q Q
S

Q Q
− +

=
−

 and 

 
Coefficient of kurtosis Moors (1988) and Al-saiary et al. (2019) is 

 

 ( ) ( )( ) ( ) ( )( )
( ) ( )

Q 7/8 +Q 3/8 - Q 5 / 8 +Q 1/ 8
Q 3/4 -Q 1/4MoorsK =  

 
3. METHODS OF ESTIMATION  

This section includes some methods of parameter estimation of the proposed 
model. 

Method of Maximum Likelihood Estimation (MLE)  
Here, ML estimators (MLE's) of the MGIE model are estimated by using MLE 

method. Let ( )1  , .., nx x x= …  be a randomly selected sample of size ‘n’ from 

MGIE ( ), ,α β λ  then the log density function can be written as, 

 
( ) ., , | log log 2log log (1 )

( 1) x  log 1 e px x

x x x x

e e
x x

β β

α β λ λ α β β

λ λα− −

= + − + + −

  − + − − −    



 
 MIGE has likelihood function as    

( )

( )

1 1 1

1 1

, , | log log 2 log log(1 )

1/ ( 1) log 1 exp

n n n

i i i
i i i

n n
x xi ii

ii i

x n n x x x

x e e
x

β β

α β λ α λ β β

λλ α

= = =

− −

= =

= + − + + −

  
− + − − −  

   

∑ ∑ ∑

∑ ∑



                            
(8) 
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Finding first order derivatives of (8) with respect to constantans 
 

/

1
log 1 exp

ixn

ii

e n
x

βλ
α α

−

=

  ∂
 = − − +  ∂    

∑

 

/

1 1 1
1

/ / /

1

1

( 1) exp 1 exp

i

i i i

n n n
xi

i
ii i i

n
x x x

i ii

x
x e

x

e e e
x x

β

β β β

λ
β β

λ λα

−

= = =
−

− − −

=

 ∂
= − + ∂ + 

      − − − − −          

∑ ∑ ∑

∑



 
1/

/ / /

1 1
( 1) exp 1 exp

i
i i i

xn n
x x x

i i ii i

n e e e e
x x x

β
β β βλ λα

λ λ

−−
− − −

= =

     ∂  = − + − − − −     ∂      
∑ ∑

 

       

12
/ / /

1
exp 1 expi i i

n
x x x

i ii
e e e

x x
β β βλ λ

α β

−
− − −

=

     ∂  = − − − −     ∂ ∂      
∑  

( )
12

/ / / /

1 1

2 /
/

1

( 1) exp 1 exp

exp

i i i i

i
i

n nx x x x

i i i i

xn x

i i i

e e e e
x x

ee
x x

β β β β

β
β

λ λα
β λ

λλ

−
− − − −

= =

−
−

=

     ∂  = + − − − −     ∂ ∂      
   
 + −        

∑ ∑

∑



 

      

1/2
/ /

1
.exp 1 exp

i
i i

xn x x

i i i i

e e e
x x x

β
β βλ λ

α β

−−
− −

=

      ∂
= − − −∑        ∂ ∂      

  

     

2

2 2
1

α α
∂

= −
∂



 

    

( )
22 2/ /2

2
1 1

exp
1

n n
x xi i i

i ii i

x
e e

x x
β βλλ

ββ
− −

= =

    ∂
= − + −    +∂     
∑ ∑

 

1
/ / / /2

1 1
( 1) exp 1 exp

n n
x x x xi i i ii i

i ii i
x e x e e e

x x
β β β βλ λλ λ α

−
− − − −

= =

         − − − − − −                    
∑ ∑

 

        ( )2/ 2 2
/ /2

1
exp 1 exp

xin
x xi i

i i ii

e
e e

x x x

β
β βλ λλ

− −
− −

=

 
       

+ − − −               
 

∑   

1/2
/ /

2 2
1

2 22/
/ /

1

( 1) exp 1 exp

exp 1 exp

xn i x xi i
i i ii

xn i x xi i
i i ii

n e e e
x x x

e e e
x x x

β
β β

β
β β

λ λα
λ λ

λ λ

−−
− −

=

−−
− −

=

     ∂  = − − − − − −     ∂      

      
− − − −             

∑

∑


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Equating 0
α β λ
∂ ∂ ∂

= = =
∂ ∂ ∂
    and performing simultaneous calculations for 

the α. β, and λ we get the ML estimators of the
 
MIGE  ( ), ,α β λ  model. But 

normally, it is not possible to solve non-linear equations mentioned above. Much 
computer software is available for solving such equations.  Let ( , , )α β λΘ =  is 

parameter vector and  ˆ ˆˆ( , , )α β λΘ = is MLE of Θ  as then the asymptotic normality 

results in ( ) ( )( ) 1
3 0,N I

− Θ−Θ → Θ
  .

  

 

( )

2 2 2

2

2 2 2

2

2 2 2

2

l l lE E E

l l lI E E E

l l lE E E

α β α λα

β α β λβ

λ α λ β λ

      ∂ ∂ ∂
           ∂ ∂ ∂ ∂∂      
 

      ∂ ∂ ∂
Θ = −            ∂ ∂ ∂ ∂∂      

      ∂ ∂ ∂            ∂ ∂ ∂ ∂ ∂      
                                           

(9) 

Since Θ may not be known practically, so it will be worthless that the MLE has 

an asymptotic variance ( )( ) 1
I

−
Θ . Let ( )O Θ  is observed fisher information matrix 

of information matrix ( )I Θ  such as 

 

 ( )
( )

..

2 2 2

2

2 2 2

|2

2 2 2

2
ˆ ˆˆ| ( , , )

ˆ ˆˆ ˆˆ

( ) ˆ ˆ ˆˆˆ

ˆ ˆ ˆ ˆˆ

l l l

l l lO H

l l l

α β λ

α β α λα

β α β λβ

λ α λ β λ

Θ=Θ

 ∂ ∂ ∂
 

∂ ∂ ∂ ∂∂ 
 

∂ ∂ ∂ Θ = − = − Θ
 ∂ ∂ ∂ ∂∂
 
 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂                                

(10) 

 
Newton-Raphson method may be used for optimization that will give the 

observed information matrix. Expression (11) is the variance covariance matrix. 
 

( )
( )

1 11 12 13

21 22 23|
31 32 33

  
a a a

H a a a
a a a

−

Θ=Θ

     − Θ =        

                                              (11)

  
.

. .

. .. .

.

11 12 13 21 22 23

31 32 33

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ), ( , ), ( , ), .( , ), ( ), ( , )
ˆ ˆ ˆ ˆˆ( , ), ( , ), ( )

a var a cov a cov a cov a var a cov

a cov a cov a var

α α β α λ β α β β λ

λ α λ β λ

= = = = = =

= = =
 

 
Also, 100(1-b) % CI for parameters of MIGE  ( ), ,α β λ  is determined by taking 

/2bZ as the upper percentile of the standard normal variate. 
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/ 2 / 2 / 2
ˆ ˆ ˆ ˆˆ ˆ( ), ( ),   and ( )b b bZ SD Z SD Z SDα α β β λ λ± ± ± . 

 
Estimation by least square (LSE) 
Constants α, β, and λ of MIGE distribution and can be determined by minimizing 

the function (12) also as 
 

 
2

( )
1

( | , , ) ( )
1

n

i
i

iA x F X
n

α β λ
=

 = − + 
∑                                                            (12) 

 
Suppose ( )iF X  denotes the CDF of the ordered statistics. Let { }1 2, ,  , nX X X…  
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respectively, can be determined by minimizing the function (13) as 
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Performing partial derivative of (13) with respect to constants as, 
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To find the weighted LSE of the function we have minimized the expression 

below with the parameters to be estimated. 
 

 ( ) ( )
1

; , , ( )
1

n

i i
i

iB X w F X
n

α β λ
=

 = − + 
∑

 
 

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/


Lal Babu Sah Telee, and Vijay Kumar 
 

International Journal of Research - GRANTHAALAYAH 104 
 

where wi is weights and has value as  
( )

( ) ( )
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21 21
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+ +
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By minimizing the function (14) we can get weighted least square estimation, 
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Estimation using Cramer- von Mises method 
This method of estimating constants α, β, and λ are determined using 

minimization of the function 
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First order partial derivatives are, 
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Solving above partial derivatives setting to zero we will get the CVM estimators 
of the proposed model MIGE. 

 
4. APPLICATION TO REAL DATASET 

We have presented here a real data. Data is strength data mentioned by Bader 
& Priest (1982) measured in GPA (Giga Pascal, GPA = KN/mm2, Kilo Newton / 
square mm.   Data is of single carbon fibers that were tested under tension at gauge 
lengths of 20 mm and 50 mm. Following is set of data used for the analysis: 

1.312, 1.314, 1.479, 1.552, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 
2.535, 2.021, 2.027, 2.055, 2.063, 2.684, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 
2.270, 2.272, 2.274, 2.301, 2.359, 2.382, 2.426, 2.435, 2.478, 2.490, 2.514, 2.554, 
2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.697, 2.726, 2.773, 2.800, 2.809, 
2.818, 2.821,2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 
3.433, 3.585, 1.700. 

Log-likelihood functions profile for the parameters is in Figure 2 to show the 
uniqueness of ML estimates. 
Figure 2 

 
Figure 2 Log-Likelihood Profile Function 

 
Here we have used R programming [R Core Team, 2018] and function optim 

() to estimate and analyze the parameter values. Value of negative Log-Likelihood is 
l = -49.3373. MLE’s with their standard errors of parameters are tabulated in Table 
1.  
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Table 1 
Table 1 MLE of Parameters and SE 

Parameter MLE SE 
α 30.7790 0.303686 
β 0.19420 0.002357 
λ 14.8297 1.067448 

 
The graph of PP plot and QQ plot are in Figure 3 indicating that validation of the 

model is justified 
Figure 3 

 
Figure 3 PP Plot (Left) and QQ Plot (Right) of Model 

 
The estimated value of the parameters of MIGE and their corresponding log-

likelihood, AIC, BIC, CAIC, and HQIC calculated and tabulate in Table 2.  
Table 2 

Table 2 Parameters and Information Criteria Values of Model 

Methods   α̂  β̂  λ̂  
LL AIC BIC CAIC HQIC 

MLE 30.7790 0.1942 14.8297 -49.3373 104.6746 111.3769 105.0438 107.3336 
LSE 14.8035 0.3295 16.9123 -49.6935 105.3869 112.0893 105.7562 108.0460 
CVE 10.7064 0.4326 19.5468 -50.0715 106.1431 112.8454 106.5123 108.8021 

 
Goodness of fit of the model is checked using three methods. We have found the 

test like KS, W and A2 statistic with their corresponding p-value taking the estimated 
parameter values by MLE, LSE and CVE estimation methods and are presented in 
Table 3. 
Table 3 

Table 3 Test Statistics Values Using KS, W and A2 and p-Values 

Method KS (p - Value) W (p - Value) A2 (p -Value) 
MLE 0.0467(0.9982) 0.0265(0.9868) 0.2227(0.9829) 
LSE 0.0443(0.9993) 0.0205(0.9967) 0.2453(0.9728) 
CVE 0.0464(0.9984) 0.0207(0.9965) 0.2921(0.9438) 

 
Figure 4 displays histogram versus density function under fitted distributions 

It also shows fitted quantile versus sample quantile under estimation techniques. 
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Figure 4 

 
Figure 4 Histogram Versus Fitted Pdf (left) and Fitted Quantile Versus Sample Quantile in Right Side 
of Estimation Methods MIGE. 

 
5. MODEL COMPARISON 

Applicability testing of MIGE is presented in this section. We have compared the 
potentiality of the proposed model by comparing this model with other four well 
known distributions. These distributions are Modified Weibull (MW) Distribution, 
Generalized Exponential Extension (GEE.) distribution, Weibull Extension (WE) 
distribution, and Generalized Exponential (GE) distribution. Information criteria 
values are presents in Table 4. Results shows that defined model fit data better 
compare to model taken in consideration. 
Table 4 

Table 4 Information Criteria Values with Log Likelihood Values 

Distribution ll AIC BIC CAIC HQIC 
MIGE -49.3373 104.6746 111.3769 105.0438 107.3336 
MW -49.6017 105.2033 111.9056 105.5725 107.8623 
GEE -49.6465 105.2930 111.9954 105.6623 107.9521 
WE -50.7239 107.4479 114.1502 107.8171 110.1069 
GE -54.6205 113.2409 117.7091 113.4227 115.0136 

 
Histogram and the fitted pdf for proposed model as well as the competing 

models are mentioned in Figure 5. It also includes the fitted cdf and the empirical 
cdf of the model.  
 Figure 5 

 
Figure 5 The Histogram and the Fitted Pdf of Models in Left Side & Empirical Cdf with Estimated 
Cdf in Right Side of MIGE Model. 

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/


Lal Babu Sah Telee, and Vijay Kumar 
 

International Journal of Research - GRANTHAALAYAH 108 
 

 
Goodness-of-fit of the MIGE distribution with other four competing model used 

earlier by other researchers are compared also. We have also tabulated the value of 
KS, AD and CVM statistic using R function in Table 5. It is found from calculation that 
the MIGE smaller value of the test statistic with maximum p-value compared to 
other  

These evidences helped us to finalize that the MIGE gets well fit and produce 
more regular & valid results from other distributions used for testing. 
Table 5 

Table 5 Statistics and p Values for Goodness-of-Fit 

Models KS (p-Value) W (p-Value) A2 (p-Value) 
MIGE 0.0467(0.9982) 0.0265(0.9868) 0.2227(0.9829) 
MW 0.0542(0.9873) 0.0326(0.9677) 0.2717(0.9577) 
GEE 0.0559(0.9823) 0.0413(0.9279) 0.2924(0.9436) 
WE 0.0647(0.9348) 0.0568(0.8357) 0.4431(0.8046) 
GE 0.0949(0.5629) 0.1603(0.3603) 1.1235(0.2983) 

 
Models taken for Comparison: 
Models and pdf are given below 

1) Modified Weibull 
The density function of Modified Weibull (MW) model Lai et al. (2003). 
 

( ){ }1( ) ( ) exp exp ; 0, , , 0MWf x x x x x x xβ βα β λ λ α λ α β λ−= + − > ≥   

 
2) Generalized Exponential Extension  

Model is introduced by Lemonte (2013) having three parameters is 
 

1
( ) 1 exp(1 (1 ) ) (1 ) exp(1 (1 ) ); 0f x x x x x

βα α ααβλ λ λ λ
−

 = − − + + − + >    

 
3) Weibull Extension  

Weibull extension by Tang et al. (2003) has pdf 
 

1

( ) exp exp exp 1 ; 0, ( , , ) 0WE
x x xf x x

β β β

λβ λα α β λ
β β β

−          = − − > >               

   

 
4) Generalized Exponential  

Gupta & Kundu (1999) introduced this model with pdf 
 

( ) 1
( ) 1 ;( , ) 0, 0x xf x e e x

αλ λαλ α λ
−− −= − > >    
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The empirical CDF curve with estimated fitted CDF curve of the model MIGE in 
Figure 6 
Figure 6 

 
Figure 6 Fitted Versus Empirical Distribution Curve of MIGE Model 

 
6. CONCLUSION 

Study is based on formulation of new probability model called Modified inverse 
Generalized Exponential distribution. Some statistical properties and their 
expressions are derived here. Pdf curve shows that the model is skewed and non 
normal in nature. Hazard rate curve is monotonically increasing and inverted 
bathtub shaped. Parameters of the model are estimated using three methods of 
estimation and the applicability of model is checked using a real data set. For validity 
testing P-P, Q-Q and fitted versus empirical distribution curves are plotted. For 
model comparisons, four existing models are considered and some information 
criteria values are also mentioned. It is found that model fits data better compared 
to considered model. To test the goodness of fit three well known methods are used. 
All the computations and the graphical measurement are performed using r 
programming. The proposed model will play a significant role in studying the 
different data sets more precisely and will help researcher for the further study of 
the probability models. 
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