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e Gutman proposed a new alternative interpretation of vertex-degree-based topological
updates index, called Sombor index. It is defined via the term \/deg(u)z + deg(v)? . In this paper,

we determine the explicit expressions of Sombor index for line and total graphs and
several pericondensed benzenoid hydrocarbons.
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1. INTRODUCTION

In the mathematical and chemical literature, several dozens of vertex-degree-
based graph invariants have been introduced and extensively studied in Pal et al.
(2019), Todeschini and Consonni (2009). For a graph G, let e(G), 6(G) and 4(&

dege

and (u) denote the size, the minimum degree and the maximum degree and
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Sombor Index of Line and Total Graphs and Pericondensed Benzenoid Hydrocarbons

the degree of the vertex % respectively. The line graph L(G) is the graph whose
vertex set is the edges of G, two vertices a and b of L(G) being adjacent if and only
if corresponding edges in G are adjacent. The total graph T(G) of a graph is the
graph whose vertex set is with two vertices of being adjacent if and only if the
corresponding elements of are either adjacent or incident.

Recently, Gutman (2021) introduced a new index defined as

S0 =S0(G) = Yuver)vdege(w)? + degg(v)? Equation 1

called Sombor index.
The distance Gutman (2021) between the d-point (x,y) and the origin of

the coordinate system is the degree-radius (or d-radius) of the edge €i, denoted by
r(x,y) Based on elementary geometry

(Using Euclidean metrics), we have

) =/

In Gutman (2021), Gutman presented a novel approach to the vertex-degree-
based topological indices of (molecular) graphs. The upper and lower bounds of
Sombor index for general trees and graphs are given, and some basic properties of
the Sombor index are established. Cruza et al. (2021) characterized the graphs
extremal with respect to the Sombor index over the following sets: (connected)
chemical graphs, chemical trees, and hexagonal systems. Das and Gutman Das and
Gutman (2022) presented bounds on SO index of trees in terms of order,
independence number, and number of pendent vertices, and characterize the
extremal cases. The mathematical relations between the Sombor index and some
other well-known degree-based descriptors was investigated in Wang et al. (2022).

In 2015, Su and Xu (2015) studied the general sum-connectivity index and co-
index of line graph of subdivision graphs.In 2021, Demirci et al. (2021) obtained the
explicit expressions for the Omega index of line and total graphs. In Section 2, the
Sombor index of L(G) and T(G) are determined, respectively.

Klav'zar et al. (1997)determined the explicit expressions of Wiener index for
several pericondensed benzenoid hydrocarbons. We also determine the explicit ex
pressions of
Sombor index for several pericondensed benzenoid hydrocarbons in Section 3.

2. RESULTS FOR LINE AND TOTAL GRAPHS

From the definitions, the following observation is immediate.
Observation 1. Let G be a graph, v,uq,u, € V(G), and uqv,u,v € E(G). Then

drey(wv) =dg(v) + dg(uq) — 2 and dy gy (uv) = dg(v) + dg(uz) — 2.

Theorem 2.1. Let G be a connected graph of order n, with maximum degree 4
and minimum degree § (§ = 2). Then
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V2n(8 — 1) < SO(L(G)) < V2nA(A — 1)?,

with equality if and only if Gis a regular graph.
Proof. From the definition of Sombor index, we have

SOL(GN = Y. d} (wy)+d; ()

(uyv,u,v)ek;

= > > W) +d)-2) +(d(v) +d(u,)-2).

ueV (G),d(v)22 uy ,uy €N (v),u; #ut,

Since 2 < § < d(v),d(uq),d(uy) <A, it follows that

\/(d(v) +d () =2) +(d() +d(u,)-2)" < \/Zdz(v) +2(A-2)’ +4d(v)d(A-2)

<J2a+2(A-2))
=2J2(A-1),

with equality if and only if d(v) = d(u;) = d(u;) = A.
For any vertex v € V(G), let N,, denote the set of vertices associated with v.

Since|N(v)| = d(v) and [{(u1,uz)lus, uz € N(v),ug # up}| = (d(zv)) - d(v)(dz(w_l)

, it follows that

S0(6) < ™2 x 2v2(A - 1) = V2nA(A - 1)%

Similarly, to Theorem 2.1, we can give a lower bound of L(G) without its proof.

Observation 2. Let G be a graph, u € V(G) , uv € E(G). Then dT(G)(v) =
2d;(v) and dy ) (uv) = dg(v) +dg(w).

Theorem 2.2. Let G be a connected graph of order n with m edges such that its

maximum and minimum degrees are 4 and §, respectively. Then

V28(2m + né + né?) < SO(T(G)) < V2A(2m + nd + na?),

with equality if and only if G is a regular graph.
Proof. Let
L= Y Jedw)y +@de)’,

uveE(G)

L= ) Y Jd@)+de) +(dw)+dv),

velV (G),d(v)22 uy ,uy €N (v),u; #u,

L= 3 JQdm) +(du)+dm).

veV (G)veN(u)
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From the definition of Sombor index, we have

Since § < d(w),d(v) =4 i rollows that

2v2mé < I < 2v2mA.

For any vertex v € V(G), since |N(v)| = d(v) and

d(zv)) - w, it follows that

|{(u1,u2)|u1,u2 € N(U), Uq * u2}| = (

V2n82(8 — 1) < I, <\2n4%(4 - 1),
242n82% < I3 < 2n4?,

and hence
V28(2m + né + nd?) < SO(T(G)) < V24(2m + nd + na?),
with equality if and only if G is a regular graph.

3. RESULTS FOR PERICONDENSED BENZENOID
HYDROCARBONS

In this section, we determine the explicit exact values for Sombor index of
several pericondensed benzenoid hydrocarbons.

3.1. PARALLELOGRAM BENZENOID SYSTEM

Forn>1and 1 <k < n, let P(n, k) be the parallelogram benzenoid system.
The definition of P(n, k) should be clear from the example P(7,4) shown in Figure
1, Klav'zar et al. (1997).

Figure 1

7

Figure 1 Parallelogram Benzenoid System
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Theorem 3.1. Let n, k be two integers withn>1and 1 <k <n.Let P(n, k)
be the parallelogram benzenoid system. Then

SO(P(n, k)) = 6v/8 + (4n + 4k — 8)V13 + (3nk — 2n — 2k + 1)V18.

Proof. For P(n, k) , we have E = (2k + 2)(n + 1) — 2 . From the definition of
Sombor index, we have

SOP(mK)= > \degy, () +degp,, (v,

vy, €E(P(n,k))
= 6r(2,2) + (4n + 4k —8)r(2,3) + (3nk — 2n — 2k + 1)r(3,3)
= 6+/8 + (4n + 4k — 813 + Bk — 2n— 2k + DA/18.

3.2. TRAPEZIUM BENZENOID SYSTEM

Forn>1and 1 <k <n, let T(n, k) be the trapezium benzenoid system.
The definition of T(n, k) should be clear from the example T(9,5) shown in
Figure 2, Klav'zar (1997).

Figure 2

9

Figure 2 Trapezium Benzenoid System T'(9, 5)

Theorem 3.2. Letn, k be two integers withn = 1and 1< k <n.LetT(nk)
be the trapezium benzenoid system. Then

SO(T(n,k)) = 6V8 + (4n + 2k — 6)V13 + (3nk — 2 k2 + 2k — 2n) VI8,

Proof. For T(n, k) ,wehave E = (k+1)(2n+ 1) — k(k — 1), and hence
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SOT(m k)= Y. \Jdegri,, () +degri,(v,)

viv; €E(T(n,k))

=6r(2,2) + (4n + 2k — 6)r(2,3) + [Zk:(n —m)+ 2§(n - h)Jr(3,3)

m=1

=6r(2,2)+ (4n+ 2k —6)r(2,3) + (@

+(k-1)(2n - k)jr(3,3)
=6r(2,2) + (4n + 2k — 6)r(2,3) + (3nk —%kz + %k - 2n)r(3,3)

:6\/§+(4n+2k—6)x/ﬁ+(3nk—%k2 +%k—2njﬁ.

3.3. PARALLELOGRAM-LIKE BENZENOID SYSTEMS

Forn>1and 1<k <n, let Py(n,k) be the parallelogram-like benzenoid
system of type 1. The definition of P; (n, k) should be clear from the example P;(7,3)
shown in Figure 3, Klav'zar (1997).

Figure 3

Figure 3 Parallelogram-Like Benzenoid System P (7, 3)

Theorem 3.3. Let n, k be two integers withn > 1and 1 < k < n.Let P;(n, k)
be the parallelogram-like benzenoid system of type 1. Then

SO(P;(n, k) = (2k + 4)V8 + (4n + 4k — 4)V13 + (6nk — 2n — 2k — 1)V/18.

Proof. From the definition of Sombor index, we have

SOR(mk)= Y \|degp () +deg,,,(v,)}

v‘v/-eE(E(n,k))
= (2k +4)r(2,2) + (4n + 4k — 4)r(2,3) + (6nk — 2n — 2k —1)r(3,3)
= (2k + 48 + (4n + 4k — 413 + (6nk — 2n— 2k —1)/18.
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For n>1 and 1 <k <n, let P,(n k) be the parallelogram-like benzenoid
system of type 2. The definition of P,(n, k) should be clear from the example P,(7,4)
shown in Figure 3, Klav'zar (1997).

Theorem 3.4. Let n, k be two integers withn > 1and 1 < k < n.Let P,(n, k)
be the parallelogram-like benzenoid system of type 2. Then

SO(Py(n, k)) = (2k + 4)V8 + (4n + 4k — 8)V13 + (6nk — 5n — 5k + 4)V/18.

Figure 4

P2(7>4)

Figure 4 Parallelogram-Like Benzenoid System of

Proof. From the definition of Sombor index, we have

SOP(mk)= Y, \Jdeg, (nk)v,)* +deg, (n,k)v,)

viv; €E (P, (n,k))
= (2k +4)1(2,2) + (4n + 4k — 8)r(2,3) + (6nk — 5n— 5k + 4)r(3,3)
= (2k + 48 + (4n + 4k —8)N13 + (6nk — 5n — 5k + 4)/18.

Forn>1and 1 <k <n+ 1, let P3(n, k) be the parallelogram-like benzenoid
system of type 3. The definition of P;(n, k) should be clear from the example P5(4,3)
shown in Figure 5, Klav'zar (1997).

Theorem 3.5. Let n, k be two integers withn > 1 and 1 < k < n. Let P;(n, k)
be the parallelogram-like benzenoid system of type 3. Then

SO(P3(n, k) = (2k + 2)V8 + (4n + 4k — 4)V13 + (6nk — 5n + k — 4)V18.
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Figure 5

1

Figure 5 Parallelogram-Like Benzenoid System P3(4, 3)

Proof. From the definition of Sombor index, we have

SO(£(n,k)) = Z \/degl’}(n,k)(vi)z + degps(n,k)(vj )2

Vv, €E(P (n,k))
= 2k +2)r(2,2) + (4n + 4k — 4)r(2,3) + (6nk — 5n + k — 4)r(3,3)
= (2k + 28 + (4n + 4k — 413 + (6nk — 5n + k — 4H)V/18.

3.4. BITRAPEZIUM BENZENOID SYSTEM

For n>1 1<k;<n-1, 1<k, <n-1, and ki+k,<n , let
BT (n, k4, k;) be the bitrapezium benzenoid system. The definition of BT (n, kq, k)
should be clear from the example BT (6,2,3) shown in Figure 6, Klav'zar (1997).

Theorem 3.6. Let n, kq, k, be three integers withn>1and 0 < k; <n-—1,
0<k,<n-—1and k;y +k; <n . Let BT(n, kq,k;) be a bitrapezium benzenoid
system. Then

SO(BT (n,k, k,)) = 6:/8 + (4n + 2k, + 2k, — 413

+[3n(k1 +k2)—%(kf +k§)—%(k1 +k2)+n—1j\/ﬁ.
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Figure 6

Figure 6 Bitrapezium Benzenoid System BT (6,2, 3)

Proof. From the definition of Sombor index, we have

SO(BT (n,k,k,)) = Z \/degBT(n,k] ,k2>("i)2 + degBT(n,kl,kz) (Vi,-)z

v,v/eE(BT(n,kl,kz )

=6r(2,2)+22n+k +k, —2)r(2,3) + (k'zﬂ(n —m)

m=l1
ky+1

£ (n-h)+2 S (n—i)+2i(n—j)—(n—l))r(3,3)

((k1 +1)2n—k -2)

=6r(2,2)+22n+k +k, - 2)r(2,3) + ;

LU D=k, ~2)
2
= 6/8 + (4n+ 2k, + 2k, 413

+hQ@n—k ~1)+k,2n—k, —1)=(n-1))r(3,3))

+(3n(k, +k2)—%(kf +k22)—§(k, +ky)+n—1I8.

3.5. GENERAL BENZENOID SYSTEM

For n>211<k;<k;<nl<k,<k;<n, and ky+k,=ks+k, Ilet
GB(n,kq,k,, ks, k,) be the bitrapezium benzenoid system. The definition of
GB(n, k4, ky, k3, k4) should be clear from the example GB(7,3,4,5,2) shown in Figure
7, Klav'zar (1997).
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Figure 7

Figure 7 Bitrapezium Benzenoid System GB(7, 3,4, 5, 2)

Theorem 3.7. Let n, kq, ky, k3, k4 be five integers withn > 1,0 < k; < k; <n,
0<ky,<k,<n and ki +k, =k3+k, . Let GB(n,ky,k,,k3,k,) be a general
benzenoid system. Then

SO(GB(n,k,ky, k; k) = 65/8 + (4n + 6k, + 4k, -2k, - 213

+[(3k] +3k, +l)n+%k]2 —%kj +3kk, —%k, -2k, —%lﬁ —3}@.

Proof. From the definition of Sombor index, we have

SO(GB(n, k] akz > k3 > k4 )) = Z \/degGB(n,/q,kz,k},/q)(vi)2 + degGB(n,kl.kz,k;,kU (vf )2

v;v; €E(GB(n,ky ky k3 ky))
= 6r(2,2)+ (4n + 6k, +4k, — 2k, —2)r(2,3)

ky+1

k-1 K k,
(S emy+ Y k- +2Y (n+0)+2Y (4 k — )
m=1 h=0 i=0 Jj=0

+3nk, - 3nk, + 3k k, — 3k k, + 2k, — 2k, )r(3,3)

= 6r(2,2) + (4n + 6k, + 4k, — 2k, - 2)r(2,3)

+((3k, +3k, +1)n +%k12 —%kf +3kk, —%kl — 2k, —%k4 ~3)r(3.3)

= 67/8 + (4n + 6k, + 4k, — 2k, —2)\13

+((3k, +3k, +1)n +%kﬁ —%kf +3k k, —%k, ~2k, —%@ ~3W/I18.
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3.6. L-POLYGONAL CHAIN PC,,
Let 1, j n Apolygonal chain of n cycles (polygons) is obtained from a sequence

of cycles, 04,05, -, 0,, by adding a bridge to each pair of consecutive cycles. If all
such cycles are [ -cycles, then this polygonal chain is called an [ -polygonal chain of
length n and denoted by PC,,. The cycle O; will be called the i -th polygon of PC,.
Note that, there are many ways to add a bridge between two consecutive cycles. So
PC,, may not be unique when n = 3. But PC,, is unique when n = 1,2. The definition
of PC,, should be clear from the shown in Figure 8, Wei and Shiu (2019).

Figure 8
s o T e X X5
. s e oo o 0 26—0—0 e o o
' Xy AN
‘(Pcn-l . On.i Vi e——e On .

PG

Figure 8 L-Polygonal Chain PC,,

Theorem 3.8. Let PC, be an [ -polygonal chain (of length n). Then

SO(PC,)=[4(I-2)+ k(2 —8) + (n—k —2)(2] -3)
+(3n =32 +[4 + 4k +2(n—k —2]W13.

Proof. From the definition of Sombor index, we have

SO(PC,)= Y, \Jdegyc, (1)’ +degy (v,

v, eE(PC,)

== 2N+ 22+ N2 + 3 (1422 427 +4427 3]
=k =2 =3N2 +22 + 2422 + 32 443 4+ 32 ]+ (n—1W32 + 32

=[4(1-2) + k(21 -8) + (n—k —2)(21 = 3) + (3n-3)W2 +[4 + 4k + 2(n—k - 2V13.

3.7. TITANIA NANOTUBES T, (m, n)

Titania nanotubes are comprehensively studied in materials science. The TiO,
sheets with a thickness of a few atomic layers were found to be remarkably stable.
Let T; (m, n) be the m rows and n columns of the titanium nanotubes. The definition
of T1(5,3) should be clear from the shown in Figure 9. Imran et al. (2021).

Theorem 3.9. Let T; (m,n) denote the graph of titanium nanotubes with m
rows and n columns. Then
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SO(T, (m,n)) = 5(4n —1) + (13m —10)N2 + (24n— 6)3/5 + 24/13
+(8mn —2m —4n +1D)\29 + (12mn —16n—3m + 4)/34.
Figure 9

| Topimage
LTHORTALTTIO OO X

_, Acorss image

Figure 9 Titanium Nanotubes T4 (5, 3)

Proof. From the definition of Sombor index, we have

SO(T(mm)= Y. \[degy,,, () +degy,,,(v,)’

v, €E (T, (mom)

—mAIW22 122 422+ 3+ Bm— a3 + 32 + (12n—3)N22 + 42
(@ -3+ 4% + Smn—2m—dn+ 122 +5°

+(12mn —16n—3m+ 432 +5°
=5(4n—1)+(13m =102 + (24n—6)\/5 + 2413

+H(8mn —2m — 4n+ D)N29 + (12mn —16n —3m + 4)\/34.
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