OPTIMAL SIZING AND OPERATION OF HYBRID POWER SYSTEMS CONSIDERING THE BATTERY CAPACITY DEGRADATION LIMITATIONS

Authors

  • Musa Terkes Research Assistant, Electrical Engineering, Yildiz Technical University, Turkey
  • Alpaslan Demirci Research Assistant, Electrical Engineering, Yildiz Technical University, Turkey

DOI:

https://doi.org/10.29121/ijetmr.v10.i9.2023.1368

Keywords:

C-Rate, Depth of Discharge, End-of-Life, Optimization, Battery Energy Storage

Abstract

Evaluating clean energy alternatives in hybrid power systems (HPS) is critical within sustainable development and zero-carbon policies. Considering the synchronization issues between energy generation and consumption, determining the optimal operating performance of battery energy storage systems (BESS) will likely increase support and interest in HPS investments. In this study, HPSs using shared BESSs for prosumers in a common bus distribution network are optimally sized with a minimum cost objective in a multi-year sensitivity analysis. Most importantly, the optimal C-rate and maximum depth of discharge (DODmax) operation are determined to match the supply-demand balance and maximize the HPS benefit at lower end-of-life (EOL) limits. The impact of increases in EOL limits on the technical, economic, and environmental feasibility of HPS and BESS aging is also evaluated. At the same time, all operations are performed considering four different sub-degradation models using the Arrhenius strategy and Rainflow Counting algorithm. The results show that increasing the C-rate reduces CO2 by up to 19% while increasing BESS equivalent cycles and cycling degradation by 28.26% and 10%, respectively. HPS performance is maximized based on optimum BESS operating at 80% DODmax. Based on the obtained results, it is also emphasized that the impact of BESS operating performance on HPS feasibility and aging analysis will be valuable for many stakeholders.

Downloads

Download data is not yet available.

References

Alsaidan, I., Khodaei, A., & Gao, W. (2016). Determination of Optimal Size and Depth of Discharge for Battery Energy Storage in Standalone Microgrids. 48th North American Power Symposium (NAPS), 1-6. https://doi.org/10.1109/NAPS.2016.7747845 DOI: https://doi.org/10.1109/NAPS.2016.7747845

Bordin, C., Anuta, H. O., Crossland, A., Gutierrez, I. L., Dent, C. J., & Vigo, D. (2017). A Linear Programming Approach for Battery Degradation Analysis and Optimization in Offgrid Power Systems with Solar Energy Integration. Renewable Energy, 101, 417-430. https://doi.org/10.1016/j.renene.2016.08.066 DOI: https://doi.org/10.1016/j.renene.2016.08.066

De La Torre, S., González-González, J. M., Aguado, J. A., & Martín, S. (2019). Optimal Battery Sizing Considering Degradation for Renewable Energy Integration. Iet Renewable Power Generation, 13(4), 572-577. https://doi.org/10.1049/iet-rpg.2018.5489 DOI: https://doi.org/10.1049/iet-rpg.2018.5489

Dulout, J., Jammes, B., Alonso, C., Anvari-Moghaddam, A., Luna, A., & Guerrero, J. M. (2017). Optimal Sizing of a Lithium Battery Energy Storage System for Grid-Connected Photovoltaic Systems. Ieee 2nd International Conference on Direct Current Microgrids (ICDCM), 582-587. https://doi.org/10.1109/ICDCM.2017.8001106 DOI: https://doi.org/10.1109/ICDCM.2017.8001106

Fallahifar, R., & Kalantar, M. (2023). Optimal Planning of Lithium Ion Battery Energy Storage for Microgrid Applications: Considering Capacity Degradation. Journal of Energy Storage, 57, 106103-106113. https://doi.org/10.1016/j.est.2022.106103 DOI: https://doi.org/10.1016/j.est.2022.106103

Gupta, S., Rawat, M. S., & Gupta, T. N. (2022). Optimal Placement and Sizing of Various C-Rate Type of Bess for Minimizing Reverse Power Flow in Radial Distribution Network. 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), 1-6. https://doi.org/10.1109/ICEFEET51821.2022.9847772 DOI: https://doi.org/10.1109/ICEFEET51821.2022.9847772

Gupta, S., Rawat, M. S., & Gupta, T. N. (2022). Optimal Placement and Sizing of Various C-Rate Type of Bess for Minimizing the Impact of Intermittent Dg Output on Hourly Peak Load Variation in Radial Distribution Network. 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), 1-6. https://doi.org/10.1109/ICEFEET51821.2022.9847777 DOI: https://doi.org/10.1109/ICEFEET51821.2022.9847777

Hlal, M. I., Ramachandaramurthy, V. K., Sarhan, A., Pouryekta, A., & Subramaniam, U. (2019). Optimum Battery Depth of Discharge for Off-Grid Solar Pv/Battery System. Journal of Energy Storage, 26, 100999-101007. https://doi.org/10.1016/j.est.2019.100999 DOI: https://doi.org/10.1016/j.est.2019.100999

Jacobus, H., Lin, B., Jimmy, D. H., Ansumana, R., Malanoski, A. P., & Stenger, D. (2011). Evaluating the Impact of Adding Energy Storage on the Performance of a Hybrid Power System. Energy Conversion and Management, 52(7), 2604-2610. https://doi.org/10.1016/j.enconman.2011.01.015 DOI: https://doi.org/10.1016/j.enconman.2011.01.015

Jung, W., Jeong, J., Kim, J., & Chang, D. (2020). Optimization of Hybrid Off-Grid System Consisting of Renewables and Li-Ion Batteries. Journal of Power Sources, 451, 227754-227765. https://doi.org/10.1016/j.jpowsour.2020.227754 DOI: https://doi.org/10.1016/j.jpowsour.2020.227754

Kebede, A. A., Coosemans, T., Messagie, M., Jemal, T., Behabtu, H. A., Van Mierlo, J., & Berecibar, M. (2021). Techno-Economic Analysis of Lithium-Ion and Lead-Acid Batteries in Stationary Energy Storage Application. Journal of Energy Storage, 40, 102748-102766. https://doi.org/10.1016/j.est.2021.102748 DOI: https://doi.org/10.1016/j.est.2021.102748

Kraenzl, J., Nguyen, T. T., & Jossen, A. (2019). Investigating Stationary Storage Applications and their Impact on Battery Aging. 14th International Conference on Ecological Vehicles and Renewable Energies (EVER), 1-9. https://doi.org/10.1109/EVER.2019.8813636 DOI: https://doi.org/10.1109/EVER.2019.8813636

Kucinskis, G., Bozorgchenani, M., Feinauer, M., Kasper, M., Wohlfahrt-Mehrens, M., & Waldmann, T. (2022). Arrhenius Plots for Li-Ion Battery Ageing as a Function of Temperature, C-Rate, and Ageing State - An Experimental Study. Journal of Power Sources, 549, 232129-232138. https://doi.org/10.1016/j.jpowsour.2022.232129 DOI: https://doi.org/10.1016/j.jpowsour.2022.232129

Li, J., Wang, D., & Pecht, M. (2019). An Electrochemical Model for High C-Rate Conditions in Lithium-Ion Batteries. Journal of Power Sources, 436, 226885-226894. https://doi.org/10.1016/j.jpowsour.2019.226885 DOI: https://doi.org/10.1016/j.jpowsour.2019.226885

Liu, J., Wang, M., Peng, J., Chen, X., Cao, S., & Yang, H. (2020). Techno-Economic Design Optimization of Hybrid Renewable Energy Applications for High-Rise Residential Buildings. Energy Conversion and Management, 213, 112868-112882. https://doi.org/10.1016/j.enconman.2020.112868 DOI: https://doi.org/10.1016/j.enconman.2020.112868

Qi, X., Wang, J., Królczyk, G., Gardoni, P., & Li, Z. (2022). Sustainability Analysis of a Hybrid Renewable Power System with Battery Storage for Islands Application. Journal of Energy Storage, 50, 104682-104693. https://doi.org/10.1016/j.est.2022.104682 DOI: https://doi.org/10.1016/j.est.2022.104682

Qiu, Z., Zhang, W., Lu, S., Li, C., Wang, J., Meng, K., & Dong, Z. (2022). Charging-Rate-Based Battery Energy Storage System in Wind Farm and Battery Storage Cooperation Bidding Problem. Csee Journal of Power and Energy Systems, 8(3), 659-668. https://doi.org/10.17775/CSEEJPES.2021.00230 DOI: https://doi.org/10.17775/CSEEJPES.2021.00230

Rayit, N. S., Chowdhury, J. I., & Balta-Ozkan, N. (2021). Techno-Economic Optimisation of Battery Storage for Grid-Level Energy Services Using Curtailed Energy from Wind. Journal of Energy Storage, 39, 102641-102654. https://doi.org/10.1016/j.est.2021.102641 DOI: https://doi.org/10.1016/j.est.2021.102641

Sarker, M. R., Murbach, M. D., Schwartz, D. T., & Ortega-Vazquez, M. A. (2017). Optimal Operation of a Battery Energy Storage System: Trade-Off Between Grid Economics and Storage Health. Electric Power Systems Research, 152, 342-349. https://doi.org/10.1016/j.epsr.2017.07.007 DOI: https://doi.org/10.1016/j.epsr.2017.07.007

Saxena, S., Xing, Y., Kwon, D., & Pecht, M. (2019). Accelerated Degradation Model for C-Rate Loading of Lithium-Ion Batteries. International Journal of Electrical Power and Energy Systems, 107, 438-445. https://doi.org/10.1016/j.ijepes.2018.12.016 DOI: https://doi.org/10.1016/j.ijepes.2018.12.016

Shabani, M., Dahlquist, E., Wallin, F., & Yan, J. (2021). Techno-Economic Impacts of Battery Performance Models and Control Strategies on Optimal Design of a Grid-Connected PV System. Energy Conversion and Management, 245, 114617-114637. https://doi.org/10.1016/j.enconman.2021.114617 DOI: https://doi.org/10.1016/j.enconman.2021.114617

Smith, K., Saxon, A., Keyser, M., Lundstrom, B., Cao, Z., & Roc, A. (2017). Life Prediction Model for Grid-Connected Li-Ion Battery Energy Storage System. Proceedings of the American Control Conference, 4062-4068. https://doi.org/10.23919/ACC.2017.7963578 DOI: https://doi.org/10.23919/ACC.2017.7963578

Tebibel, H., Labed, S., Khellaf, A., Ziogou, C., Papadopoulou, S., & Voutetakis, S. (2015). Impact of the Battery Depth of Discharge on the Performance of Photovoltaic Hydrogen Production Unit with Energy Management Strategy. International Conference on Renewable Energy Research and Applications (ICRERA), 1074-1078. https://doi.org/10.1109/ICRERA.2015.7418575 DOI: https://doi.org/10.1109/ICRERA.2015.7418575

Terkes, M., Demirci, A., & Gokalp, E. (2023). An Evaluation of Optimal Sized Second-Life Electric Vehicle Batteries Improving Technical, Economic, and Environmental Effects of Hybrid Power Systems. Energy Conversion and Management, 291, 117272-117286. https://doi.org/10.1016/j.enconman.2023.117272 DOI: https://doi.org/10.1016/j.enconman.2023.117272

Terkes, M., Tercan, S. M., Demirci, A., & Gokalp, E. (2022). An Evaluation of Renewable Fraction Using Energy Storage for Electric Vehicle Charging Station. 4th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 1-10. https://doi.org/10.1109/HORA55278.2022.9800091 DOI: https://doi.org/10.1109/HORA55278.2022.9800091

Terkes, M., & Demirci, A. (2023). Evaluation of Hybrid Power System Feasibility Considering Battery Degradation. 17th International Scientific Research Congress, 95-105.

Tsioumas, E., Jabbour, N., Koseoglou, M., Papagiannis, D., & Mademlis, C. (2021). Enhanced Sizing Methodology for the Renewable Energy Sources and the Battery Storage System in a Nearly Zero Energy Building. IEEE Transactions on Power Electronics, 36(9), 10142-10156. https://doi.org/10.1109/TPEL.2021.3058395 DOI: https://doi.org/10.1109/TPEL.2021.3058395

Wang, S., Guo, D., Han, X., Lu, L., Sun, K., Li, W., Sauer, D. U., & Ouyang, M. (2020). Impact of Battery Degradation Models on Energy Management of a Grid-Connected DC Microgrid. Energy, 207, 118228-118243. https://doi.org/10.1016/j.energy.2020.118228 DOI: https://doi.org/10.1016/j.energy.2020.118228

Wu, Y., Liu, Z., Liu, J., Xiao, H., Liu, R., & Zhang, L. (2022). Optimal Battery Capacity of Grid-Connected PV-Battery Systems Considering Battery Degradation. Renewable Energy, 181, 10-23. https://doi.org/10.1016/j.renene.2021.09.036 DOI: https://doi.org/10.1016/j.renene.2021.09.036

Zhao, C., & Li, X. (2023). Microgrid Optimal Energy Scheduling Considering Neural Network Based Battery Degradation. IEEE Transactions on Power Systems, 1-12. https://doi.org/10.1109/tpwrs.2023.3239113 DOI: https://doi.org/10.1109/TPWRS.2023.3239113

Zieba Falama, R., Dawoua Kaoutoing, M., Kwefeu Mbakop, F., Dumbrava, V., Makloufi, S., Djongyang, N., Salah, C. Ben, & Doka, S. Y. (2022). A Comparative Study Based on a Techno-Environmental-Economic Analysis of Some Hybrid Grid-Connected Systems Operating Under Electricity Blackouts: A Case Study in Cameroon. Energy Conversion and Management, 251, 114935. https://doi.org/10.1016/j.enconman.2021.114935 DOI: https://doi.org/10.1016/j.enconman.2021.114935

Üçtuğ, F. G., & Azapagic, A. (2018). Environmental Impacts of Small-Scale Hybrid Energy Systems: Coupling Solar Photovoltaics and Lithium-Ion Batteries. Science of the Total Environment, 643, 1579-1589. https://doi.org/10.1016/j.scitotenv.2018.06.290 DOI: https://doi.org/10.1016/j.scitotenv.2018.06.290

Downloads

Published

2023-10-03

How to Cite

Terkeş, M., & Demirci, A. (2023). OPTIMAL SIZING AND OPERATION OF HYBRID POWER SYSTEMS CONSIDERING THE BATTERY CAPACITY DEGRADATION LIMITATIONS. International Journal of Engineering Technologies and Management Research, 10(9), 52–69. https://doi.org/10.29121/ijetmr.v10.i9.2023.1368