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ABSTRACT 
Currently, facial recognition systems need to reveal a person’s face to perform 
recognition. However, some people currently wear masks to prevent respiratory 
infections. Therefore, this will affect the efficiency of some face recognition systems. 
Therefore, in this study, we propose a face recognition and body temperature 
measurement system, and propose an integrated system for masked face recognition, 
mask detection, and body temperature detection. The proposed system can be used to 
recognize unconcluded facial images, and we use methods capable of simulating occluded 
images. The resulting images are used to train the neural network. Experimental results 
show that the accuracy of naked face recognition reaches 99.79%, and the accuracy of 
masked face recognition reaches 99.4%. In addition, the mask detection accuracy rate 
reaches 99.6%. Therefore, the system can improve the accuracy of face recognition and 
provide efficient security inspection results. 
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1. INTRODUCTION 
The current face recognition system has difficulties in identifying faces that are 

forged or with objects covering the face. The COVID-19 epidemic in recent years has 
made some people accustomed to wearing masks, or medical staff and patients in 
some medical places also wear masks. The use of facial recognition in these 
situations can prevent contact and avoid contagious infections. In addition, since 
forged faces may result in poor recognition rates, in order to solve the problem of 
identifying living faces, human body temperature can not only become personal 
characteristics, but also help the system solve the problem of face misjudgment. 
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Although facial recognition systems have been used in many places, some 
systems can only operate under specific conditions and will not be able to correctly 
identify masked faces in the above- mentioned situations and occasions. 

Consequently, we have proposed a face recognition and body temperature 
measurement system which has four objectives. First, it addresses the situations 
where facial recognition may be invalid, i.e., when a user is wearing a mask. Second, 
it detects the presence of a face mask. Third, it measures the user’s body 
temperature using a thermal imager to determine whether the user has a fever. 
Lastly, it performs liveness detection by integrating visible and thermal images. 
These objectives are expected to in-crease convenience, reduce personnel 
workload, and reduce the risk of infection. 

Therefore, this study made two major contributions. First, we propose a 
masked face image generator that augments training samples and improves face 
recognition accuracy. Second, we propose a face recognition combined with body 
temperature monitoring system. This innovative method can solve the problem of 
not being able to recognize faces when wearing a mask and use a thermal imager to 
measure body temperature to determine whether the detected object is a living 
object before performing face recognition, ultimately improving system security 
and accuracy. 

To implement the proposed system, we have analysed the methods proposed 
in relevant literature and performed a comparison. The remainder of this section is 
organized as follows: (1) review of masked face dataset, (2) review of occluded-face 
recognition, and (3) review of liveness detection. 

 
1.1. REVIEW OF MASKED FACE DATASET 
There are several publicly available large-scale face datasets, such as MS-Celeb-

1M Guo et al. (2016), labelled faces in the wild (LFW) Huang et al. (2008), and CASIA-
Web Face Yi et al. (2014). Most images in these datasets originate from the internet. 
Although these datasets have many face images under unconstrained conditions, 
they often contain numerous noisy signals. Ge et al. (2020) proposed an image 
dataset containing occluded faces. It comprises 30,811 images from the internet, 
including 35,806 labelled occluded faces. The masks in the dataset are not limited to 
face masks, and include scarves, glasses, and even hands. They used this dataset to 
enhance facial detection under unconstrained conditions. Wang et al. (2023) 
proposed a real-world masked face dataset containing unmasked and real masked 
face images of 525 people and a simulated masked face-recognition da-taste 
generated using the LFW Huang et al. (2008) and Web Face Yi et al. (2014) datasets. 
However, the number of masked images in the real-world masked face dataset 
required to train the neural network is extremely small. Moreover, only one mask 
image was used to generate the simulated masked face-recognition dataset, 
resulting in insufficient data diversity. Thus far, very few datasets have collected 
masked facial images to identify individuals. For face recognition under a face mask, 
a dataset of masked faces is built for individual identities that can be used to train 
face-recognition models. We used a self-collected face dataset and public face 
dataset with image synthesis for this purpose. The details are presented in Section 
2. 
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1.2. REVIEW OF OCCLUDED-FACE RECOGNITION 
Occluded-face recognition is one of the primary challenges in facial recognition. 

Face recognition is realized through the extraction and comparison of key features 
of the face. The completeness of facial features is a critical factor that determines 
success or failure. Occlusion causes the disappearance of certain facial features, 
presenting in-complete facial features. Under this condition, the facial features 
cannot be compared with the face information in the database, resulting in 
recognition failure. Zeng et al. (2021) divided face occlusion into five categories: (1) 
real-world occlusion, such as those caused by scarves, sunglasses, and other 
accessories; (2) partial face occlusion, containing only a part of the face; (3) 
synthetic occlusion, which simulates the occlusion that may occur in the real world 
through image synthesis; (4) rectangular occlusion, such as using white or black 
rectangular blocks to overlay the original image; and (5) occlusion caused by 
irrelevant images, such as overlaying a non-face-related image over the face image. 
Hariri (2015) divided the approaches to occluded-face recognition into three 
categories: 

1) Match-based approach 
2) Occlusion removal-based approach 
3) Occlusion-recovery-based approach 

 
1) Match-based approach: This approach involves matching the similarities 

between images. In general, a facial image is segmented into small patches 
and feature extraction is performed on each patch. Thus, the occluded area 
does not affect other intact facial regions. Cheheb et al. (2017) first divided 
the facial images into multiple patches. Subsequently, they used a local 
binary pattern to obtain the local descriptor of each patch. They then 
trained multiple sub-support vector machine (SVM) classifiers by randomly 
selecting patches. Finally, the results of several subclassifies were 
combined to improve the recognition performance. Trigueros et al. (2018) 
used visualization techniques to identify areas of the face that were more 
effective for identification when using convolutional neural networks 
(CNNs). They then occluded these areas during training to increase the 
robustness of the model-to-face occlusions. 

2) Occlusion-removal-based approach: This approach removes the 
occluded portion from the original image. Only facial areas can be used for 
recognition. For masked face recognition, Hariri (2015) first aligned the 
facial image to ensure that the eyes were horizontal. Following adjustments 
of the image to a specific size, the bottom half of the image containing the 
face mask was removed. Only the eye and forehead areas were included in 
the subsequent identification tasks. Qiu et al. (2022) reported that the 
human visual system subconsciously ignored occluded parts to focus on 
other unoccluded parts. Therefore, they proposed a Face Recognition with 
Occlusion Masks (FROM). The FROM learns to discover the corrupted 
features from the deep convolutional neural networks and clean them by 
the dynamically learned masks. 

3) Occlusion recovery-based approach: This approach performs general 
face recognition by restoring an occluded area to its unoccluded 
appearance. Zhao et al. (2017) proposed a robust long short-term memory 
(LSTM)-autoencoder (RLA) model to recognize occluded faces. It 



Advanced AI Face Recognition and Accurate Human Temperature Monitoring System Through Infrared and Visible Image Fusion 
 

International Journal of Engineering Technologies and Management Research 29 
 

comprised two LSTM components. The multiscale spatial LSTM encoder 
generated feature representations with occlusion robustness. The other 
two-channel LSTM decoder iteratively restored the occluded face and 
performed occluded area detection. Following the removal of occlusion, the 
occluded-face recognition performance was effectively improved. 

There are several excellent face-recognition methods, such as SphereFace Liu 
et al. (2017), CosFace Wang et al. (2018), and ArcFace Deng et al. (2019). They 
improve the inter-class separability and intra-class compactness by adding angular 
intervals to the loss function. The loss functions of these three studies are similar 
apart from the placement of the angle interval. They achieved good results in general 
face recognition but did not address masked faces. Based on the findings of 
Trigueros et al. (2018), we used the simulated masked face database mentioned in 
Section 3.2 to train our deep-learning model and perform face verification. In 
addition, a face-verification approach was proposed to improve the facial 
recognition performance of the system. Moreover, we addressed masked faces 
through by integrating these two technologies into a general face-recognition 
system. 
Figure 1 

 
Figure 1 Proposed System Architecture 

 
1.3. REVIEW OF LIVENESS DETECTION 
Spoofing attacks have emerged with the widespread use of biometric 

authentication technologies. This has resulted in security and privacy concerns 
regarding the system. A secure system requires anti-spoofing techniques such as 
liveness detection to prevent improper usage. Different biometric authentication 
technologies incorporate corresponding liveness detection approaches, such as 
fingerprint liveness Sharma & Selwal (2022) and face liveness detection. This 
approach can be implemented using the motion, texture, and deep-learning-based 
approaches. 

A motion-based approach extracts the motion information from a sequence 
containing numerous frames, such as blinking and head rotation. These behaviours 
can be used to distinguish whether a face is a spoof Birla & Gupta (2022), Kamanga 
& Lyimo (2022). Texture-based approaches distinguish the spoofs through the 
extraction of handmade texture features. Määttä et al. (2011) asserted that face 
prints usually contained defects that can be detected by texture features. Therefore, 
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they used a local binary pattern to analyse facial textures and an SVM classifier to 
classify real and fake faces. The deep-learning- based approach uses anti-spoofing 
features learned by deep neural networks to distinguish spoofs. Atoum et al. (2017) 
combined two CNN models for liveness detection. One model distinguished re- al 
faces from spoof images using local features. They assumed that face prints would 
have a flat depth map. Therefore, another model was used to estimate the depth of 
the face images. Finally, the results of the two models were combined to determine 
if they were spoofs. 

Although these methods have achieved good results, they face certain 
limitations. Among the motion-based approaches, Teh et al. (2022) believed that 
using blinking to determine whether a person is alive has a relatively limited effect 
on the video and is heavily influenced by the 

reflection of glasses. Yang et al. (2014) believed that a texture-al-feature-based 
approach may not be adequate to learn the most discriminative in-formation for 
distinguishing a spoof. Deep- learning-based approaches consume considerable 
computing resources. Since we perform human temperature measurements in our 
system, we believe that the measured temperature can also be used to perform 
liveness detection. Although an additional hardware requirement is necessary when 
compared to previous approaches, a thermal camera is necessary for temperature 
measurement. Therefore, the cost of liveness detection can be ignored. 

 
2. PROPOSED METHOD 

2.1. SYSTEM OVERVIEW 
Figure 1 depicts the architecture of the proposed system. It comprises six parts: 

(1) masked face image generation, (2) face detection, (3) face recognition, (4) face 
verification, (5) mask detection, and (6) fever and liveness detection modules. The 
inputs of the system were visible and thermal images, and the outputs were 
temperature, temperature state, mask state, and identity. 
Table 1 

Table 1 Presents the Pseudo Code of our Proposed System Algorithm 

The pseudo code of our proposed system algorithm. 
Input: input IR images {iri} and RGB images {xi} 
Output: The face temperature {Ti}, liveness status {Si}, mask status {Mi} and Identity results{Oi}. 
1: While not end do 
2: ißi + 1 
3: Run Face Detection Module for each {xi} 4: Output face region {Ri} 
5: Run Fever & Liveness Detection Module for each {iri} 
6: Combine face region {Ri} ans IR face region {iri} to get face temperature {Ti} 7: Output face 

temperature {Ti} and liveness status {Si} 
8: Run Mask Detection Module for each face region {Ri} 9: Output mask status {Mi} 
10: Run Face Recognition Module for each {Ri} 11: Output recognition results {Ci} 
12: Input {Ci} to run Face Verification Module 
13: Output Identity results {Oi} 
14: end while 

 
1) Masked Face Image Generation Module: In this module, the input was an 

unmasked face image. Facial landmarks were obtained after passing through 
the face detector. Subsequently, the facial landmarks were analysed to 
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determine the scale and rotation angle of the face mask image. Finally, the 
face mask image was pasted onto the input image through image processing 
to complete masked face generation. 

2) Face Detection Module: In this part, the input was an image captured by the 
webcam. Facial landmarks were obtained after passing through the face 
detection network. The input image was then cropped and aligned with facial 
landmarks. Finally, the module outputs the facial landmarks and the aligned 
facial image for use in subsequent tasks. 

 Figure 2 

 
Figure 2 Flowchart of Masked Face Image Generator 

 
3) Face-Recognition Module: The input is a facial image that is aligned by the 

face detection module. The facial features were obtained after the face image 
was passed through the facial feature extraction network. The facial image 
was then identified using an identity classifier. Finally, the module outputs 
the tentative identity and the facial feature for use by the Face Verification 
Module. 

4) Face-Verification Module: This module used the system’s facial feature 
database and a masked facial feature database to verify the output of the 
tentative identity from the face- recognition module. If the tentative identity 
passes the verification, the module outputs it as the system’s identity 
recognition result. Otherwise, the unknown identity is generated as the 
output. 

5) Mask-Detection Module: The input of this module is the aligned facial image 
output from the face detection module. The presence of a mask can be 
determined after passing the input image through the mask-detection 
network and mask status classifier. 

6) Fever & Liveness Detection Module: This module converted facial 
landmarks into thermal image coordinates through a coordinate 
transformation. The coordinates were then used to extract the facial region 
from the entire thermal image. Finally, the facial temperature was examined 
and the temperature value and status of the user were generated as output. 

 
2.2. MASKED FACE IMAGE GENERATION MODULE 
We implemented four primary processes in this module: (1) face detection, (2) 

face landmark analysis, (3) size and angle of mask image adjustment, and (4) image 
synthesis. Figure 2 presents a flowchart of this process. We used a face detector from 
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the DLib machine learning library to detect faces. We then used a 68-point facial 
landmark detection model to obtain the facial landmarks. By analyzing the predicted 
facial landmarks, we obtained the scaling and rotation angles of the mask image. 
Finally, we performed image synthesis to determine the effect of wearing a mask on 
a bare face. We masked the unmasked face database with this module to generate a 
simulated masked face database, which was then used in the face-verification 
module and feature extraction model training. 
Figure 3 

 
Figure 3 68 Facial Landmarks  

 
1) Face Landmark Analysis: We used a 68-point facial landmark extractor 

provided by Dlib for facial landmark analysis. Figure 3 depicts the 68-point 
facial landmarks. The landmarks of both eyes (points 37 and 46) were used 
to determine facial rotation. Assuming that the coordinates of the left eye 
are (Xleft, Yleft) and those of the right eye are (Xright, Yright), the angle 
between the two eyes can be expressed as follows: 

 

                                                                                                (1) 
 

The face mask image was rotated using this angle. Points 4 and 14 determine 
the width of the face mask image, and Points 9 and 30 determine the height of the 
face mask image. Furthermore, Points 30, 9, 49, and 55 determine the center of the 
mouth. 

2) Image Synthesis: We adjusted the angle and size of the face mask image 
using the settings explained in Section 2.2.1. The center of the mask was 
then overlaid on the center of the mouth using image synthesis to create a 
simulated masked face image. Figure 4 presents the samples of mask 
images. Figure 5 presents some unmasked and simulated masked facial 
images generated using this module. The unmasked facial image samples 
were obtained from the VGGFace2 Cao et al. (2018) dataset. 
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 Figure 4 

 
Figure 4 Samples of Face Mask Image 

 
2.3. FACE DETECTION MODULE 
This module comprised two primary processes: (1) face detection and (2) 

face alignment. Figure 6 presents a flowchart of this process. Firstly, we used a 
single-stage headless face detector Najibi et al. (2017) to detect faces during the face 
detection stage. The input image was then passed through the face detection model 
to obtain the facial bounding boxes. In the face alignment stage, we used facial 
bounding boxes and landmarks to crop the facial region out of the original input 
image and calculate the rotation angle of the face. We then rotated the cropped facial 
image using the rotation angle. Finally, the module outputs the aligned facial images 
and landmarks for subsequent tasks. 
Figure 5 

 
Figure 5 Samples of Normal Face and Simulated Masked 

 
1) Face Alignment: Facial rotation has always been a significant challenge in 

facial recognition. The accuracy of the other tasks may be affected if it is not 
addressed appropriately. The rotational changes are classified into yaw, 
roll, and pitch. Before outputting the extracted facial images to the other 
modules, face alignment must be performed for subsequent tasks to 
proceed smoothly. 

A complete facial image cannot be obtained if the face is affected by the self-
occlusion of yaw and pitch changes. We can only train the model for subsequent 
tasks by increasing the database to avoid the influence of these two types of 
rotations to the maximum possible extent. Facial alignment can be achieved using 
facial landmarks to manage roll changes. We used the same approach as that in 
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Section 2.2.1 to determine the angle of the two eyes. Using this angle, we can rotate 
the original image by an angle of θ through affine transformation to complete the 
face image alignment and send it to the subsequent module for other tasks. 
Figure 6 

 
Figure 6 Flowchart of Face Detection Module 

 
2.4. FACE RECOGNITION MODULE 
This module comprised two primary modules: (1) facial feature extraction 

and (2) identity classification. Figure 7 presents a flowchart of this process. First, we 
used ResNet He et al. (2016) trained with an additive angular margin loss Deng et 
al. (2019) to extract the features of the input face. Table 2 lists the network 
architecture. Finally, the network outputs a 512-D feature, that is, the facial feature 
of the input image. We then calculate the similarities between the extracted features 
and the features of each identity in the face database. 
Figure 7 

 
Figure 7 Flowchart of Face-Recognition Module 

 
Table 2 

Table 2 Architecture of Resnet 100 

Layer name Output size ResNet 100 
Conv1 112 × 112 3×3, 64 

Conv2_x 56 × 56 3 × 3, 64 
[ ] ×3 

3 × 3, 64 
Conv3_x 28 × 28 [3 × 3, 128  ] ×13 

3 × 3, 128 
Conv4_x 14 × 14 [3 × 3, 256] ×30 

3 × 3, 256 
Conv5_x 7 × 7 [3 × 3, 512] ×3 

   3 × 3, 512 
FC 512 512 
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1) Identity Classification: Our system requires one unmasked and one 

simulated masked face image for each identity stored in the face image 
databases. We then extracted the facial features from the facial images of 
each identity in the database and stored them in the unmasked and 
simulated facial feature databases. We calculated the cosine similarities 
between the input facial features and the features in the unmasked facial 
feature database individually. The simulated facial feature database was 
used for face verification. 

In the identity classification stage, we used the concept of a prototype network 
Snell et al. (2017), which uses relative distance as the basis for classification, to 
determine the identity with the highest similarity to the identity of the input image. 
Each class has a prototype representation; in our approach, it is the facial features 
of each identity in the database. The classification problem involves identifying the 
nearest neighbours in the feature space. 
Figure 8 

 
Figure 8 Flowchart of Face-Verification Module 

 
2.5. FACE VERIFICATION MODULE 
This module verified the face-recognition results. Figure 8 present a flowchart 

of this process. This module contains two primary processes: (1) tentative identity 
facial feature extraction and (2) strong and weak correlation verification. We use 
the facial features of the tentative identity stored in the database to verify the input 
facial features in the two stages. If the verification is validated, the module outputs 
the identity; otherwise, the output is an unknown identity. 

1) Strong & Weak Correlation Verification: In Section 2.4.1, we explained 
that the identity classification of the face-recognition module is based on 
the relative distance between the input facial feature and the feature of each 
identity in the database. However, relying only on the relative distance can 
result in classification errors. Therefore, cooperating with verification can 
increase the accuracy. Facial verification verifies whether the absolute 
distance exceeds the set threshold value to determine whether two features 
belong to the same identity. Unlike setting a high threshold value, which 
renders it challenging for the masked face to pass the verification, setting a 
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low threshold value slightly improves the accuracy. Therefore, we propose 
strong and weak correlation verifications to address this issue. This process 
is illustrated in Figure 9. 

Figure 9 

 
Figure 9 Flowchart of Strong and Weak Correlation Verification 

 
Figure 10 

 
Figure 10 Flowchart of Mask-Detection Module 

 
The first step in both the verifications was unmasked face matching. We 

calculated the similarity between the input and unmasked facial features of the 
tentative identity. Subsequently, we verify whether the similarity is higher than the 
threshold value. If this condition is satisfied, we believe that the input feature is 
strongly related to the tentative identity. If the input face feature fails the strong 
correlation verification, masked face matching is performed. We calculated the 
similarity between the input features and simulated masked facial features of the 
tentative identity. We then verified the masked face similarity. If it was higher than 
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another threshold, we inferred that the input feature is weakly correlated with the 
tentative identity. If the input face passed one of the verifications, we determined 
whether the input feature belongs to that identity. If the input face failed both 
verifications, we considered it as an unknown identity. 

Since the similarity of unmasked face matching is calculated in the face-
recognition module, the proposed face-verification approach only needs to calculate 
the similarity between the input feature and masked facial feature of the tentative 
identity. When compared to the calculation amount of face recognition, the 
increased calculation amount of the face-verification approach accounts for only a 
small part of the total calculation. 
Figure 11 

 
Figure 11 Flowchart of Fever and Liveness Detection Module 

 
2.6. MASK DETECTION MODULE 
This module comprised two primary processes: (1) mask-wearing confidence 

calculation and (2) mask-status classification. Figure 10 presents a flowchart of this 
process. Since mask detection is relatively simpler than both facial detection and 
recognition, we choose a lightweight network to reduce the number of calculations 
in the system. In the mask-wearing confidence calculation stage, we used 
MobileNetV2 Sandler et al. (2018) to calculate the confidence of the input face 
wearing the mask. In the mask status classification stage, the module detected the 
presence of a mask based on whether the confidence exceeded the threshold. 

After the input image is calculated using MobileNetV2, different output 
dimensions are obtained based on the number of categories to be classified. The 
output is two-dimensional since we determine whether the user is wearing a mask. 
We used the softmax activation function at the end of the neural network to calculate 
the confidence. The softmax activation function is expressed as follows Sandler et 
al. (2018): 

 

                                                                                   (2) 
 
The softmax activation function compresses a K-dimensional vector, Z, with 

arbitrary real numbers into another K-dimensional real vector, ∂(Z). Each element 
of ∂(Z) ranges between 0 and 1, and all the elements sum to 1. This is the probability 
of each category; that is, the probability of wearing a mask versus the probability of 
not wearing a mask. 

We use the binary cross entropy loss function defined as follows: 
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = − ∑𝑛𝑛 𝑦𝑦𝑦𝑦𝑦 𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝑦𝑦 + (1 − 𝑦𝑦𝑦𝑦𝑦)𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑦𝑦𝑦𝑦𝑦)                                                              (3) 
  

                                                                         (4) 
 
where 𝑦𝑦𝑦𝑦𝑦 denotes the target label and 𝑦𝑦𝑦𝑦 denotes the predicted probability 

value. This loss function evaluates the difference between the probabilities. Loss is 
zero only when 𝑦𝑦𝑦𝑦 and 𝑦𝑦𝑦𝑦𝑦 are equal. Otherwise, it is positive. The larger the difference 
between 𝑦𝑦𝑦𝑦 and 𝑦𝑦𝑦𝑦𝑦, the larger the loss. For example, if the input image is a face with 
a mask, 𝑦𝑦𝑦𝑦𝑦 = 1. 𝑦𝑦𝑦𝑦 is the probability that the model believes that the user is wearing 
a mask. The greater the difference between the predicted probability and 1, the 
greater the loss. 

 
2.7. FEVER AND LIVENESS DETECTION MODULE 
This module comprised four primary processes: (1) homography, (2) facial 

region extraction, (3) determination of the highest temperature, and (4) checking 
the temperature. Figure 11presents a flowchart of this process. We obtained the 
facial bounding box on the thermal image after performing homography using the 
facial bounding box of the visible image. The facial bounding box in the thermal 
image was combined with the thermal image to extract the facial region from the 
image. The highest temperature value in the facial region is the user’s forehead 
temperature since the pixel intensity of the thermal image corresponds to the 
temperature. Finally, the temperature status of the person was determined by 
verifying where the temperature falls within the specified range. If the temperature 
exceeds 37.5 °C, the person may have a fever. If it is lower than 34 °C, the person is 
considered to be a spoof, and if it is in between these values, the person has a normal 
temperature. 

All the images used in the previous modules were visible images. In this module, 
we introduce thermal images captured using a thermal camera for temperature 
measurements. However, even if two cameras with different fields of view are 
placed close together, the images obtained by the two cameras capturing the same 
object cannot be directly superimposed. Therefore, we cannot share information 
regarding the thermal and visible images. Figure 12 depicts an example of directly 
superimposing visible and thermal images before processing. Notably, the visible 
and thermal images are not completely overlapped. Although we can obtain the face 
bounding box from a visible image, the bounding box cannot perfectly encompass 
the facial region in the thermal image. Therefore, homography must be performed 
to ensure that the two images overlap to the maximum possible extent. 

1) Homography: In the field of computer vision, two images of the same 
planar surface in space are related using homography. The corresponding 
points of the two images can be mapped using a homography matrix (3 × 3 
matrix). The homography matrix is expressed as follows: 

 

                                                                                                        (5) 
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The formula for mapping the corresponding point (x1, y1) in the left image to 
the corresponding point in the right image can be expressed as follows [28]: 

 

                                                                                             (6) 
 

Homogeneous coordinates are used instead of Cartesian coordinates for matrix 
multiplication to express the spatial translation, scaling, and rotation. As the 
homogeneous coordinates can be scaled arbitrarily, the homography matrix can be 
expressed as follows Bradski & Kaehler (2008): 

 

                                                                (7) 
 

 Figure 12 

 
Figure 12 Thermal Image and Visible Image Superimposed Before Homography 

 
The revised homography matrix contains eight parameters. We can derive this 

matrix using four corresponding points in the two images related to homography. 
The coordinates of the same plane in the two images can be mapped arbitrarily by 
using the homography matrix. 
Figure 13 

 
Figure 13 Thermal Image and Visible Image Superimposed after Homography 
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Figure 14 

 
Figure 14 Coordinate Transformation of Facial Bounding Box 

 
To align the visible image with the thermal image using homography, we 

allowed the webcam and thermal camera to shoot an object with a temperature 
higher than the background temperature to manually mark the corresponding 
points. After determining the four corresponding points, we calculate the 
homography matrix by using the function provided by the OpenCV library Bradski 
& Kaehler (2008) and finally align the visible light image with the thermal image. 
Figure 13presents the result. Notably, the error is significantly smaller than the 
error depicted in Figure 12. 

After obtaining the homography matrix which converts the coordinates of the 
thermal and visible images, we use it to convert the coordinates of the face bounding 
box. We obtain the facial bounding box on the thermal image by using homography 
for the coordinate transformation of the facial bounding box of the visible image, as 
shown in Figure 14. Thus, we determine the highest temperature in the facial region 
in the thermal image as the user’s temperature and determine the user’s 
temperature status by verifying the temperature. 

 
3. EXPERIMENTAL RESULT 

3.1. UNMASKED FACE-RECOGNITION ACCURACY TEST 
We train two models for testing: one with the simulated masked face database 

and the other without the simulated masked face database.  
For the model trained without the simulated masked face database, we use the 

self-collected and VGGFace2 datasets. The training data contains 50 identities, of 
which 28 are obtained from the self-collected dataset, and the remaining are 
obtained from the VGGFace2 dataset. The self- collected dataset contains 12188 
unmasked face images from different angles. The VGGFace2 dataset contains 6295 
face images under unconstrained conditions. For the model trained with the 
simulated masked face database, we additionally use 4586 simulated masked face 
images generated from both datasets. 

We used the Large-scale Celeb Faces Attributes (CelebA) Liu et al. (2015), 
VGGFace2, and self-collected datasets for testing. None of the test images were 
included in the training dataset. For the CelebA test set, we obtained 100 identities 
from the original database, totalling 2,274 images. For the VGGFace2 test set, we 
used 90 identities with 29077 images. The self-collected test set contained 9 
identities with 13,433 images captured in the laboratory. The testers did not wear a 
mask. They slightly rotated and moved their faces during shooting to increase the 
reliability of the test. 
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One image of each identity to be recognized was used as the face-recognition 
database, that is, the output of the face recognition will only be an unknown identity 
or one of these identities. For the CelebA and VGGFace2 test sets, the face-
recognition database contained only the identities in the test set. For the tests of the 
self-collected test set, the face-recognition database contained 81 identities of the 
VGGFace2 test set in addition to the 9 identities tested to increase the reliability of 
the test. If the classification result was determined to be of an unknown identity, it 
was excluded from the accuracy calculation. 

 

                                                           (8) 
 

Table 3  
Table 3 Accuracy on Unmasked Celeba Test Set 

Setting #Test #Unknown #Correct #Wrong Accuracy 
Origin 2274 3 2261 10 99.56% 

Origin+SM 2274 3 2261 10 99.56% 
Origin+Ver 2274 21 2252 1 99.96% 

Origin+SM+Ver 2274 18 2255 1 99.96% 

 
Table 4  

Table 4 Accuracy on Unmasked Vggface2 Test Set 

Setting #Test #Unknown #Correct #Wrong Accuracy 
Origin 29077 432 27349 1296 95.48% 

Origin+SM 29077 328 27349 1400 95.13% 
Origin+Ver 29077 2944 26098 35 99.87% 

Origin+SM+Ver 29077 2762 26261 54 99.79% 

 
Table 5  

Table 5 Accuracy on Unmasked Self-Collected Test Set 

Setting #Test #Unknown #Correct #Wrong Accuracy 
Origin 13433 0 13433 0 100% 

Origin+SM 13433 0 13433 0 100% 
Origin+Ver 13433 22 13411 0 100% 

Origin+SM+Ver 13433 17 13416 0 100% 

 
Table 6 presents the unmasked test results for the four experimental settings 

of the three test sets. The experimental results demonstrate that, even if the model 
is trained with the SMFD or not, adding face verification can improve the accuracy. 
The harder the test set, the greater the improvement in the accuracy. Adding facial 
verification improves the accuracy by 0.4% in the celebA test and at least 4.39% in 
the VGGFace2 test, whereas no effect is observed in the tests on the self-collected 
dataset. 
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Table 6  
Table 6 Accuracy in Unmasked Face Test 

Accuracy CelebA VGGFace2 Self-collected dataset 
Origin 99.56% 95.48% 100% 

Origin+SM 99.56% 95.13% 100% 
Origin+Ver 99.96% 99.87% 100% 

Origin+SM+Ver 99.96% 99.79% 100% 

 
Table 7 presents a comparison of the proposed system with other methods. The 

proposed system was implemented using ArcFace and the proposed face-
verification approach. We trained all the test models using the SMFD. Although the 
proposed face-verification approach was designed for masked face recognition, the 
experimental results demonstrated that it could also improve the accuracy of 
unmasked face recognition. 
Table 7  

Table 7 Accuracy Compared to Other Methods in Unmasked Face Test 

Accuracy CelebA VGGFace2 
SphereFace Liu et al. (2017) + SMFD 99.43% 94.92% 
CosFace Wang et al. (2018) + SMFD 99.52% 95.32% 
ArcFace Deng et al. (2019) + SMFD 99.56% 95.13% 

(Origin+SM in above table) 
Proposed system 

(Origin+SM+Ver in above table) 

99.96% 99.79% 

 
3.2. MASKED FACE-RECOGNITION ACCURACY TEST 
We used the masked face image generation module on the CelebA and 

VGGFace2 test sets and used the generated masked face images for testing. A total 
of 2210 and 26161 images were generated from the CelebA and VGGFace2 datasets, 
respectively. The self-collected test set contained 9 identities and 18026 images 
captured in the laboratory. The testers wore masks, slightly rotated, and moved 
their faces during shooting to increase the reliability of the test. The experimental 
settings and combinations were identical to those used in the unmasked face 
accuracy test. 
Table 8  

Table 8 Accuracy on Simulated Masked Celeba Test Set 

Setting #Test #Unknown #Correct #Wrong Accuracy 
Origin 2210 5 2172 33 98.50% 

Origin+SM 2210 2 2187 21 99.05% 
Origin+Ver 2210 91 2111 8 99.62% 

Origin+SM+Ver 2210 47 2156 7 99.68% 

 
Table 9  

Table 9 Accuracy on Simulated Masked Vggface2 Test Set 

Setting #Test #Unknown #Correct #Wrong Accuracy 
Origin 26161 590 23839 1732 93.23% 

Origin+SM 26161 333 24163 1665 93.55% 
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Origin+Ver 26161 4231 21794 136 99.38% 
Origin+SM+Ver 26161 3311 22712 138 99.4% 

 
Table 10 

Table 10 Accuracy on Real Masked Self-Collected Test Set 

Setting #Test #Unknown #Correct #Wrong Accuracy 
Origin 18026 344 17482 200 98.87% 

Origin+SM 18026 64 17883 79 99.56% 
Origin+Ver 18026 604 17403 19 99.89% 

Origin+SM+Ver 18026 158 17848 20 99.89% 
 

Table 11 presents the masked face test results for the four experimental 
settings of the three test sets. Table 12 presents a comparison of the proposed 
system with other systems. The experimental results demonstrate that similar to 
the unmasked face test, adding facial verification to either model can improve the 
accuracy. Moreover, the accuracy improvement in the masked face test is also higher 
than that in the unmasked face test. Including facial verification improves the 
accuracies by at least 0.63% in the simulated masked celebA test, by 5.85% in the 
simulated masked VGGFace2 test, by and 0.33% in the test on a real masked self-
collected dataset. 

The model trained with the SMFD also improved the accuracy of the masked 
face tests. This improvement was more noticeable when no face verification was 
performed. If no face verification was conducted in the tests, using the SMFD to train 
the model could improve the accuracy by 0.55% in the simulated masked celebA, 
0.32% in the simulated masked VGGFace2, and 0.69% in the real masked self-
collected tests. 
 Table 11  

Table 11 Accuracy in Masked Face Test 

Accuracy CelebA VGGFace2 Self-collected dataset 
Origin 98.5% 93.23% 98.87% 

Origin+SM 99.05% 93.55% 99.56% 
Origin+Ver 99.62% 99.38% 99.89% 

Origin+SM+Ver 99.68% 99.40% 99.89% 

 
Table 12  

Table 12 Accuracy when Compared to other Methods in Unmasked Face Test 

Accuracy CelebA VGGFace2 
SphereFace Liu et al. (2017) + SMFD 98.41% 92.72% 
CosFace Wang et al. (2018) + SMFD 99.05% 93.81% 
ArcFace Deng et al. (2019) + SMFD 99.05% 93.55% 

(Origin+SM in above table) 
Proposed system 

(Origin+SM+Ver in above table) 

99.68% 99.4% 
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3.3. FALSE ACCEPTANCE RATE (FAR) AND FALSE REJECTION 

RATE (FRR) TEST 
We used the VGGFace2 and self-collection test sets to perform the test. For the 

VGGFace2 test, 90 identities from the VGG2 dataset were used. We used nine 
identities for the tests on the self- collection test set. 

One image of each identity to be recognized is used as the face-recognition 
database. That is, the output of the face recognition can only be an unknown identity 
or one of these identities. For the VGGFace2 test set, the face-recognition database 
contained only the identities in the test set. For the tests on the self-collected test 
set, the face-recognition database contained 81 identities of the VGGFace2 test set 
in addition to the 9 identities tested to increase the reliability of the test. The images 
used in the face-recognition database were removed from the test set. 

 

                                              (9)  
    

                                                  (10) 
  
Table 13 presents the test results of the unmasked VGGFace2 test set with 

models trained with and without the SMFDs. 
Table 13  

Table 13 FAR and FRR for the Unmasked Vggface2 Test Set 

Test Setting 
  

FAR without the 
SMFD 

FRR without the 
SMFD 

FAR with the 
SMFD 

FRR with the 
SMFD 

VerH 0.00135% 8.54% 0.00209% 8.05% 
VerM 0.0029% 8.45% 0.00456% 7.93% 
VerL 0.00568% 8.3% 0.00866% 7.79% 
NVer 0.05% 5.18% 0.054% 5.21% 

 
Table 14 presents the test results of the simulated masked VGGFace2 test set 

with the models trained with and without the SMFDs. 
Table 14   

Table 14 FAR and FRR for Simulated Masked Vggface2 Test Set 

Test 
Setting 

FAR without the 
SMFD 

FRR without 
the SMFD 

FAR with the  
SMFD 

FRR with the 
SMFD 

VerH 0.00584% 13.87% 0.00593% 11.02% 
VerM 0.017% 11.19% 0.01659% 9.41% 
VerL 0.027% 10.08% 0.027% 8.43% 
NVer 0.074% 7.4% 0.071% 6.53% 

 
Table 15 presents the test results of the unmasked self-collected test set with 

models trained with and without the simulated masked face databases. 
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Table 15  
Table 15 FAR and FRR for Unmasked Self-Collected Test Sets 

Test Setting FAR without the 
SMFD 

FRR without the 
SMFD 

FAR with the 
SMFD 

FRR with the 
SMFD 

VerH 0 0.16% 0 0.13% 
VerM 0 0.16% 0 0.13% 
VerL 0 0.16% 0 0.13% 
NVer 0 0 0 0 

 
Table 16 presents the test results of the real masked self-collected test set with 

models trained with and without the simulated masked face databases. 
Table 16  

Table 16 FAR and FRR on Real Masked Self-Collected Test Sets 

Test Setting FAR without the 
SMFD 

FRR without the 
SMFD 

FAR with the 
SMFD 

FRR with the 
SMFD 

VerH 0.0124% 3.45% 0.0131% 0.99% 
VerM 0.0444% 3.06% 0.034% 0.87% 
VerL 0.0464% 3.03% 0.0379% 0.85% 
NVer 0.0464% 3.02% 0.0386% 0.79% 

 
According to the experimental results, the FAR with face verification was 

significantly lower than that without face verification. Moreover, the higher the 
threshold of face verification, the lower the FAR. The experimental results 
demonstrated that including face verification can effectively increase the security of 
the system. Notably, the FAR of the unmasked self-collection test set was zero 
because its shooting environment was relatively simpler than that of VGGFace2, 
with less interference from the environment and light. In addition, the average 
image quality was better, due to which it was relatively easy to recognize. 

The average FRR of the model trained using the simulated masked face 
database was lower than that of the model trained without the database. The 
experimental results demonstrated that including a simulated masked face database 
during model training can improve the convenience. For the VGGFace2 test set, the 
average FRR was high because the photo-shooting environment, including different 
lighting and backgrounds, was complex and the photo quality was uneven. For the 
self-collected test set, the average FRR performance was improved further because 
the lighting and background of the photo-shooting environment were simpler and 
the photo quality was higher. 

 
3.4. MASK-DETECTION TEST 
The training dataset contained 2971 masked and 3323 unmasked face images 

captured using web crawlers. The test dataset contained 9 identities. A total of 
18,035 masked and 13,442 unmasked facial images were captured in the laboratory. 
The testers rotated and moved their faces slightly during shooting to increase the 
reliability of the test. 

Table 17 presents the confusion matrix for the mask-detection test. The 
experimental results demonstrated that the proposed system could identify a user 
without a face mask. Most misclassified cases were caused by excessive head-
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turning angles. In our experimental results, the accuracy is 99.6%, precision is 
100%, recall is 99.3% and F1 score is 99.65%. 
Table 17  

Table 17 Confusion Matrix of Mask-Detection Test 

Confusion Matrix Actual class   
Masked Unmasked 

Predicted Masked 17909 0 
class Unmasked 126 13442 

 
3.5. LIVENESS DETECTION TEST 
Table 18 presents the experimental results. The proposed system could 

effectively distinguish between real people and photographs. The temperature of 
the surrounding environment, such as those from hot drinks and food, is not 
considered to be human temperature. Some people were misclassified as photos 
because the system could not obtain the correct temperature of users whose faces 
were blocked by glasses, face masks, or hair. 
 Table 18  

Table 18 Confusion Matrix of Liveness Detection Test 

Confusion Matrix Actual class   
Live face Fake face 

Predicted Live face 48 0 
class Fake face 2 50 

 
4. CONCLUSIONS 

This study proposes a face recognition integrated human body temperature 
measurement system. The proposed system was used to realize unmasked face 
images; we then developed a method that could simulate masked images, apply the 
generated images to train neural networks, and perform face verification such that 
the system would be able to address occluded faces. In addition, strong and weak 
correlation verifications were proposed in the face-verification module to improve 
the accuracy of masked face recognition. By combining the proposed face- 
verification method with a dataset of simulated masked faces, the accuracies of the 
unmasked and simulated masked tests on the VGGFace2 test set were increased by 
4.31% and 6.17%, respectively. In the fever living body detection module, we 
effectively fused visible light and thermal images to achieve accurate temperature 
measurements and living body detection. 

In our experimental results, the accuracy rate of naked face recognition reached 
99.79%, whereas that of masked face recognition reached 99.4%. In the mask-
detection experiment, the accuracy reached 99.6%. In addition, live detection 
experiments demonstrated that the system could effectively prevent face spoofing 
attacks on photos and videos and integrate temperature measurement functions to 
improve the performance of mask face recognition, making the system convenient 
and practical.  
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