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ABSTRACT 
This article investigates the creeping axisymmetric flow of an incompressible micropolar 
fluid past a swarm of porous shells. Employing the Darcy and a transition Brinkman 
porous layer, the study presents an analytical model that captures the flow behavior by 
integrating continuity conditions for velocity, normal and tangential stresses, and 
microrotations at fluid-porous interface regions. 
Distinct unit cell techniques, including those proposed by Happel, Kuwabara, Kvashnin, 
and Mehta and Morse, are analyzed to observe the effects of hydraulic resistivity, porous 
layer thickness, and porosity on the dimensionless drag for a bounded micropolar fluid 
system. The results, graphically represented in a series of plots, reveal a complex 
interplay between these parameters, significantly impacting drag forces and providing 
insight into the hydrodynamics of a swarm of porous particles, akin to that encountered 
in oral drug delivery systems. 
The study identifies a general inverse relationship between hydraulic resistivity and drag 
and highlights the nuanced effects of porous layer thickness and porosity on fluid 
resistance, with stark contrasts observed among different unit cell models. These 
findings underscore the importance of the chosen unit cell technique in predicting and 
optimizing the flow behavior in micropolar fluid systems. 
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1. INTRODUCTION 
Micropolar fluid flow has various applications in different fields. It is used in 

heat exchangers, cooling nuclear reactors, designing energy systems, and the casting 
and injection processes of fluids Kocic et al. (2023). Micropolar fluids are also 
relevant in the flow of human or animal blood, the extraction of crude oil, and the 
flow of polymer fluids or liquid crystals Kocic et al. (2023). They are utilized in 
biomedical applications, such as biological, physical, and chemical processes, as well 
as lubrication systems and hydrodynamic-fluid problems Kethireddy et al. (2022). 
Micropolar fluids are also important in convective heat and mass transfer, polymer 
production, and the cooling of particles for metallic sheets Awan et al. (2022). 
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Additionally, micropolar fluids containing small conductive particles have potential 
applications in drug delivery and localized heating Narla et al. (2022). This paper 
focuses on the application of micropolar fluid and porous spheres in drug delivery. 

The analytical investigation of micropolar fluid flow past a porous sphere has 
been carried out in several papers. El-Sapa analyzes the axisymmetric creeping flow 
of micropolar fluid past a porous surface saturated with micropolar fluid using an 
analytical method El-Sapa (2022). Maurya and Deo study the flow of micropolar 
fluid through a porous cylinder enclosing a solid cylindrical core under an externally 
applied magnetic field Khanukaeva (2022). Aparna et al. consider the uniform flow 
of a viscous fluid past a spherical ball filled with porous medium saturated by 
micropolar fluid and observe the effects of porosity and micropolarity parameters 
on the flow and drag Maurya & Deo (2022). Khanukaeva models the flow of 
micropolar fluid through a spherical cell consisting of a solid core, porous layer, and 
liquid envelope using the cell model technique Slattery & Bird (1961). Prasad 
investigates the low Reynolds number flow of an incompressible micropolar fluid 
past and through a porous sphere and studies the variation of drag force with the 
permeability parameter Podilay et al. (2022). Khanukaeva analyzed the micropolar 
liquid filtration through spherical cell membranes with porous layers using 
micropolar and Brinkman-type equations, investigating hydrodynamic 
permeability based on media characteristics Khanukaeva (2022). 

For the application of oral drug delivery, a collection or swarm of porous 
particles is involved. The study that follows is aimed at modeling and exploring the 
hydrodynamics of this swarm of porous particles. Complications arise when 
modeling complex geometry comprising an assemblage of particles. The two 
primary methods for handling boundary value problems involving a collection of 
particles are: the method of reflections and the unit cell technique. 

The concept behind the unit cell technique is that a collection of particles can 
be divided into a number of identical cells, with one particle occupying each cell 
Happel & Brenner (1983). The boundary value problem is now reduced to a single 
particle bounded by a fictitious envelope. The cell model is most applicable for a 
concentration of periodic particles where the effect of the container wall can be 
neglected. Various cell shapes can be implemented, but it is more convenient to use 
a spherical envelope as the fictitious surface of the cell. 

The boundary conditions imposed on the surface of the envelope represent the 
interactions with the other porous particles of the assembly. The thickness of the 
surrounding fluid layer is adjusted so the ratio of the solid volume to the volume of 
the liquid envelope represents exactly the solid volume fraction of the porous 
medium. 

An early sphere-in-cell model was proposed by Cunningham (1910). He 
considered particle sedimentation and postulated that the movement of each 
spherical particle was allowed only within a concentric mass of fluid boundaries. 
Mehta and Morse Mehta & Morse (1975) adopted Cunningham's approach by 
assuming the tangential velocity as a component of the fluid velocity, signifying the 
homogeneity of the flow on the cell boundary. The importance of the Mehta and 
Morse boundary conditions is that the average flow variables over a cell volume can 
be scaled to obtain large scale behavior. 

Happel (1958) and Kuwabara (1959) independently presented sphere-in-cell 
models. The major differences between these two models are in the boundary 
conditions imposed on the outer envelope surface. The Happel model assumes a 
uniform velocity condition and no tangential stress at the cell envelope surface. This 
formulation results in an analytically closed solution that is axisymmetric and can 
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be easily used for heat and mass transfer calculations. The Kuwabara cell model uses 
zero vorticity condition on the cell surface. The Kuwabara formulation requires a 
small exchange of mechanical energy with the environment. The mechanical power 
given by the sphere to the fluid is not all consumed by viscous dissipation in the fluid 
layer Vasin et al. (2008). 

Neale & Nader (1974) considered the spherical cell embedded in an 
unbounded, continuous, homogeneous, and isotropic permeable medium of the 
same porosity and permeability as the porous particles that make up the swarm.  

They used Brinkmans's equation to model the porous regions. Kvashnin (1980) 
implemented a tangential component of velocity that reaches a minimum with 
respect to radial distance on the cell surface. This was done to represent the 
symmetry of the cell. 

This study investigates the creeping axisymmetric flow of an incompressible 
micropolar fluid past a porous shell. The porous region is modeled using Darcy 
equation sandwiched between two transition Brinkman regions. A stream function 
formulation is used to solve the system. The accompanying boundary conditions 
used are continuity of velocity, normal and tangential stresses, and non-
homogeneous microrotations across the fluid porous region interfaces. At the 
Brinkman- Darcy interfaces continuity of velocity, normal stresses, microrotations 
and the Beavers and Joseph condition is implemented. An analytical expression for 
the dimensionless drag, for the bounded fluid cases as outlined by Happel, 
Kuwabara, Kvashnin and Mehta, and Morse is derived, and plots of the 
dimensionless drag as it varies with hydraulic resistivity, porous layer thickness, 
and porosity are presented.  

The study's insights into the hydrodynamics of swarms of porous particles have 
direct implications for designing more efficient oral drug delivery systems. By 
understanding the interactions between drug-carrying particles and the 
surrounding fluid, pharmaceutical engineers can optimize the design of these 
systems for targeted delivery El-Sapa (2022). The research on micropolar fluid 
flows through porous shells can be applied to the optimization of heat exchangers, 
cooling systems for nuclear reactors, and other energy systems. By manipulating 
parameters such as hydraulic resistivity, porous layer thickness, and porosity, 
engineers can control fluid resistance and enhance the efficiency of these systems 
Maurya & Deo (2022). 

 
2. MODEL FORMULATION  

The unit cell technique will be used to model a swarm of porous shells in an 
incompressible micropolar fluid. The porous region is modeled as a transition 
Brinkman region overlying a Darcy region. The problem geometry is presented in 
Figure 1. 
Figure 1 

 
Figure 1 Modelling an Assembly of Porous Spheres Using the Unit Cell Method. 



Micropolar Fluid Flows Relative to a Swarm of Spherical Porous Shells 
 

International Journal of Engineering Technologies and Management Research 45 
 

 
The boundary conditions implemented in the model for the single porous shell 

in a micropolar fluid will be used, with the exception of the specific boundary 
conditions at 𝑟𝑟 = 𝑟𝑟𝑒𝑒, which is dictated by the particular unit cell technique used. 

The following unit cell techniques will be implemented at 𝑟𝑟 = 𝑟𝑟𝑒𝑒 : 

1) Happel: 𝑞𝑞𝑟𝑟
(1) = cos 𝜃𝜃 and the tangential stress 𝜏𝜏𝑟𝑟𝑟𝑟

(1) = 0 

2) Kuwabara: 𝑞𝑞𝑟𝑟
(1) = cos 𝜃𝜃 and the vorticity, ∇ × �⃗�𝑞(1) = 0 

3) Kvashnin: 𝑞𝑞𝑟𝑟
(1) = cos 𝜃𝜃 and ∂𝑞𝑞𝜃𝜃

(1)

∂𝑟𝑟
= 0 

4) Mehta and Morse 𝑞𝑞𝑟𝑟
(1) = cos 𝜃𝜃 and 𝑞𝑞𝑟𝑟

(1) = −sin 𝜃𝜃 
In the analysis for the single porous shell the radius 𝑟𝑟 = 𝑟𝑟𝑒𝑒 was arbitrarily 

chosen. This will not be the case for the analysis involving the swarm of porous 
particles. To ensure the same ratio of the solid volume to the volume of the liquid 
envelope represents exactly the solid volume fraction of the porous medium, the 
following expression is utilized: 

volume fraction of the porous medium = particle volume fraction in the cell 

1 − 𝜙𝜙 = �
𝑎𝑎
𝑟𝑟𝑒𝑒
�
3

𝑟𝑟𝑒𝑒 =
𝑎𝑎

(1 − 𝜙𝜙)
1
3

 

 
In dimensionless form this is: 

𝑟𝑟𝑒𝑒 =
1

(1 − 𝜙𝜙)
1
3

 

 

All unit cell techniques utilize the boundary condition 𝑞𝑞𝑟𝑟
(1) = cos at 𝑟𝑟𝑒𝑒. It is the 

second boundary condition that changes for a specific unit cell technique. 
1) Happel: 

𝜏𝜏𝑟𝑟𝑟𝑟
(1) = 0 

 
the dimensionless tangential stress is given by: 

𝜏𝜏𝑟𝑟𝑟𝑟
(1)

𝜇𝜇𝜇𝜇
𝑎𝑎

= �
1
𝑟𝑟
∂𝑞𝑞𝑟𝑟

(1)

∂𝜃𝜃
+ 𝑟𝑟

∂
∂𝑟𝑟
�
𝑞𝑞𝑟𝑟

(1)

𝑟𝑟
��+

𝑁𝑁
1 −𝑁𝑁

∂
∂𝑟𝑟
𝑞𝑞𝑟𝑟

(1) −
𝑁𝑁

1 −𝑁𝑁
𝜔𝜔(1) 

 
Therefore: 

�
1
𝑟𝑟
∂𝑞𝑞𝑟𝑟

(1)

∂𝜃𝜃
+ 𝑟𝑟

∂
∂𝑟𝑟
�
𝑞𝑞𝑟𝑟

(1)

𝑟𝑟
��+

𝑁𝑁
1 −𝑁𝑁

∂
∂𝑟𝑟
𝑞𝑞𝑟𝑟

(1) −
𝑁𝑁

1 −𝑁𝑁
𝜔𝜔(1) = 0 
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0 =
3(𝑁𝑁 − 2)

2𝑟𝑟𝑒𝑒4(𝑁𝑁 − 1)
𝐵𝐵(1) +

3𝑟𝑟𝑒𝑒(𝑁𝑁 − 2)
2(𝑁𝑁 − 1)

𝐶𝐶(1)

 −𝑚𝑚�
2−𝑁𝑁

2𝑟𝑟𝑒𝑒
3
2(𝑁𝑁 − 1)

�𝐾𝐾5
2

(𝑚𝑚𝑟𝑟𝑒𝑒)𝐸𝐸(1)

 −𝑚𝑚�
𝑁𝑁 − 2

2𝑟𝑟𝑒𝑒
3
2(𝑁𝑁 − 1)

�𝐼𝐼5
2

(𝑚𝑚𝑟𝑟𝑒𝑒)𝐹𝐹(1)

 

 
2) Kuwabara: 

0 =
𝑚𝑚2

�𝑟𝑟𝑒𝑒
𝐾𝐾3
2

(𝑚𝑚𝑟𝑟𝑒𝑒)𝐸𝐸(1) +
𝑚𝑚2

�𝑟𝑟𝑒𝑒
𝐼𝐼3
2

(𝑚𝑚𝑟𝑟𝑒𝑒)𝐹𝐹(1) + 10𝑟𝑟𝑒𝑒𝐶𝐶(1) −
2𝐷𝐷(1)

𝑟𝑟2
 

 
3) Kvashnin: 

∂𝑞𝑞𝑟𝑟
(1)

∂𝑟𝑟
=0

0 =
12
𝑟𝑟𝑒𝑒4
𝐵𝐵(1) + 32𝑟𝑟𝑒𝑒𝐶𝐶(1) −

4
𝑟𝑟2
𝐷𝐷(1)

 +
4𝑚𝑚�𝑚𝑚𝑟𝑟𝑒𝑒𝐾𝐾3

2
(𝑚𝑚𝑟𝑟𝑒𝑒) + 𝐾𝐾5

2
(𝑚𝑚𝑟𝑟𝑒𝑒)�

𝑟𝑟𝑒𝑒
3
2

𝐸𝐸(1)

 −
4𝑚𝑚�−𝑚𝑚𝑟𝑟𝑒𝑒𝐼𝐼3

2
(𝑚𝑚𝑟𝑟𝑒𝑒) + 𝐼𝐼5

2
(𝑚𝑚𝑟𝑟𝑒𝑒)�

𝑟𝑟𝑒𝑒
3
2

𝐹𝐹(1)

 

 
4) Mehta and Morse:  

𝑞𝑞𝑟𝑟=𝑟𝑟𝑒𝑒
(1)  = cos 𝜃𝜃

−1 = 𝐴𝐴(1) +
𝐵𝐵(1)

𝑟𝑟𝑒𝑒3
+ 𝐶𝐶(1)𝑟𝑟𝑒𝑒2 +

𝐷𝐷(1)

𝑟𝑟𝑒𝑒
+
𝐸𝐸(1)

𝑟𝑟𝑒𝑒
3
2
𝐾𝐾3
2

(𝑚𝑚𝑟𝑟𝑒𝑒) +
𝐹𝐹(1)

𝑟𝑟𝑒𝑒
3
2
𝐼𝐼3
2

(𝑚𝑚𝑟𝑟𝑒𝑒) 

𝑞𝑞𝑟𝑟
(1) = −sin 𝜃𝜃 

−1 =𝐴𝐴(1) −
𝐵𝐵(1)

2𝑟𝑟𝑒𝑒3
+ 2𝐶𝐶(1)𝑟𝑟𝑒𝑒2 +

𝐷𝐷(1)

2𝑟𝑟𝑒𝑒
+
𝐸𝐸(1)

4𝑟𝑟𝑒𝑒
3
2
�4𝐾𝐾3

2
(𝑚𝑚𝑟𝑟𝑒𝑒) − 2𝑚𝑚𝑟𝑟𝑒𝑒𝐾𝐾5

2
(𝑚𝑚𝑟𝑟𝑒𝑒)�

 +
𝐹𝐹(1)

4𝑟𝑟𝑒𝑒
3
2
�4𝐼𝐼3

2
(𝑚𝑚𝑟𝑟𝑒𝑒) + 2𝑚𝑚𝑟𝑟𝑒𝑒𝐼𝐼5

2
(𝑚𝑚𝑟𝑟𝑒𝑒)�

 

 
2.1. DIMENSIONLESS DRAG 
An expression for the dimensionless drag on a porous shell in a micropolar fluid 

was derived and given by Happel & Brenner (1983) as:  
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𝐷𝐷 = 2𝜋𝜋𝑎𝑎2 �  
𝜋𝜋

0
�𝜏𝜏𝑟𝑟∗𝑟𝑟∗

(1) cos 𝜃𝜃 − 𝜏𝜏𝑟𝑟∗𝑟𝑟
(1) sin 𝜃𝜃�

𝑟𝑟∗=𝑎𝑎
sin 𝜃𝜃𝜃𝜃𝜃𝜃 

 
Where for a micropolar fluid [19] 

𝜏𝜏𝑟𝑟∗𝑟𝑟∗
(1)  = �−𝑝𝑝∗(1) + (2𝜇𝜇 + 𝜅𝜅)

∂𝑞𝑞𝑟𝑟∗
∗(1)

∂𝑟𝑟∗
�
𝑟𝑟∗=𝑎𝑎

𝜏𝜏𝑟𝑟∗𝑟𝑟
(1)  = �𝜇𝜇 �

1
𝑟𝑟∗
∂𝑞𝑞𝑟𝑟∗

∗(1)

∂𝜃𝜃
+ 𝑟𝑟∗

∂
∂𝑟𝑟∗

�
𝑞𝑞𝑟𝑟
∗(1)

𝑟𝑟∗
��+ 𝜅𝜅

∂
∂𝑟𝑟∗

𝑞𝑞𝑟𝑟
∗(1) − 𝜅𝜅𝜔𝜔∗(1)�

𝑟𝑟∗=𝑎𝑎

 

 
which gives in dimensionless form: 

𝐷𝐷𝑙𝑙 = �  
𝜋𝜋

0
 ��−𝑝𝑝(1) +

(2 −𝑁𝑁)
(1 −𝑁𝑁)

∂𝑞𝑞𝑟𝑟
(1)

∂𝑟𝑟
� cos 𝜃𝜃

−��
1
𝑟𝑟
∂𝑞𝑞𝑟𝑟

(1)

∂𝜃𝜃
+ 𝑟𝑟

∂
∂𝑟𝑟
�
𝑞𝑞𝑟𝑟

(1)

𝑟𝑟
��+

𝑁𝑁
(1 −𝑁𝑁)

∂
∂𝑟𝑟
𝑞𝑞𝑟𝑟

(1) −
𝑁𝑁

(1 −𝑁𝑁)
𝜔𝜔(1)� sin 𝜃𝜃�

𝑟𝑟=1

sin 𝑟𝑟𝜃𝜃𝑟𝑟 

 

where: 𝐷𝐷𝑙𝑙 = 𝐷𝐷
2𝜋𝜋𝑎𝑎𝜋𝜋𝜋𝜋

 is the dimensionless drag 

The analysis, plots and discussion were all for an unbounded micropolar fluid. 
In using the various unit cell techniques, boundary conditions are specified on the 
outer envelope. This represents a bounding of the micropolar fluid. 

The stream functions for the various regions were solved and given below. The 
outer micropolar fluid stream function for the unit cell technique is given from as: 

𝜓𝜓(𝑈𝑈1) =�𝐴𝐴(𝑈𝑈1)𝑟𝑟2 +
𝐵𝐵(𝑈𝑈1)

𝑟𝑟
+ 𝐶𝐶(𝑈𝑈1)𝑟𝑟4 + 𝐷𝐷(𝑈𝑈1)𝑟𝑟

+𝐸𝐸(𝑈𝑈1)√𝑟𝑟𝐾𝐾3
2

(𝑚𝑚𝑟𝑟) + 𝐹𝐹(𝑈𝑈1)√𝑟𝑟𝐼𝐼3
2

(𝑚𝑚𝑟𝑟)
sin2 𝜃𝜃

2
�
 

 
The inner micropolar region stream function is given from as: 

𝜓𝜓(𝑈𝑈3) = �𝐴𝐴(𝑈𝑈3)𝑟𝑟2 + 𝐶𝐶(𝑈𝑈3)𝑟𝑟4 + 𝐹𝐹(𝑈𝑈3)√𝑟𝑟𝐼𝐼3
2

(𝑚𝑚𝑟𝑟)�
sin2 𝜃𝜃

2
 

 
and the Brinkman regions as: 

𝜓𝜓(𝑈𝑈𝑈𝑈) = �𝐴𝐴(𝑈𝑈𝑈𝑈)𝑟𝑟2 +
𝐵𝐵(𝑈𝑈𝑈𝑈)

𝑟𝑟
+ 𝐶𝐶(𝑈𝑈𝑈𝑈)√𝑟𝑟𝐾𝐾3

2
(𝜘𝜘𝑟𝑟)

+𝐷𝐷(𝑈𝑈𝑈𝑈)√𝑟𝑟𝐼𝐼3
2

(𝜘𝜘𝑟𝑟) + 𝐸𝐸(𝑈𝑈𝑈𝑈)√𝑟𝑟𝐾𝐾3
2

(𝜚𝜚𝑟𝑟) + 𝐹𝐹(𝑈𝑈𝑈𝑈)√𝑟𝑟𝐼𝐼3
2

(𝜚𝜚𝑟𝑟)�
sin2 𝜃𝜃

2

 

 
where 𝑖𝑖 = 𝑏𝑏1 or 𝑏𝑏2 
The Darcy region from is: 
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𝜓𝜓(𝑈𝑈2) = �𝐴𝐴(𝑈𝑈2)𝑟𝑟2 +
𝐵𝐵(𝑈𝑈2)

𝑟𝑟
+ 𝐸𝐸(𝑈𝑈2)√𝑟𝑟𝑌𝑌3

2
(𝑚𝑚𝜃𝜃𝑟𝑟) + 𝐹𝐹(𝑈𝑈2)√𝑟𝑟𝐽𝐽3

2
(𝑚𝑚𝜃𝜃𝑟𝑟)�

sin2 𝜃𝜃
2

 

 
where 𝑈𝑈 specifies a unit cell technique: Happel (𝑈𝑈 = 𝐻𝐻), Kuwabara (𝑈𝑈 = 𝐾𝐾𝐾𝐾), 

Kvashnin (𝑈𝑈 = 𝐾𝐾𝐾𝐾) and Mehta and Morse (𝑈𝑈 = 𝑀𝑀𝑀𝑀). 
The constants are solved using the boundary conditions given in the analysis 

for the single porous shell, which is replaced by boundary condition for Happel, 
Kuwabarra and Kvashnin unit cell techniques respectively.  

The dimensionless drag, 𝐷𝐷𝑙𝑙
(𝑈𝑈) for the unit cell technique is derived as: 

𝐷𝐷𝑙𝑙
(𝑈𝑈) =

(𝑁𝑁 − 2)
(𝑁𝑁 − 1)

𝐷𝐷(𝑈𝑈1) 

 
3. RESULTS AND DISCUSSIONS  

Plots of the dimensionless drag 𝐷𝐷𝑙𝑙
(𝑈𝑈) for the various unit cell techniques, as they 

vary with hydraulic resistivity 𝛼𝛼, porous layer thickness 𝜖𝜖𝑝𝑝 and porosity 𝜙𝜙 are 
provided in Figure 1, Figure 2 and Figure 3 respectively. For all three plots the Mehta 
and Morse unit cell conditions vary significantly with Happel, Kvashnin and 
Kuwabara. In Figure 1 through Figure 3, the presented data clearly delineate the 
effects of hydraulic resistivity, porous layer thickness, and porosity on drag within 
micropolar fluid flows through various unit cell techniques. Figure 1 illustrates the 
inverse relationship between hydraulic resistivity and drag, a trend consistent 
across all unit cell models. Figure 2 shows the non-linear effect of porous layer 
thickness on drag, with the Mehta and Morse model exhibiting a unique trend of 
increased drag with increased thickness, contrary to the other models. Finally, 
Figure 3 highlights the critical dependency of drag on porosity, showing a significant 
reduction as porosity approaches unity.  
Figure 2 

 
Figure 2 Drag Plots for Varying Hydraulic Resistivity α, using the Different Unit Cell Techniques. 
�𝛽𝛽 = 0.5,𝑁𝑁 = 0.5,𝑚𝑚 = 10,𝜙𝜙 = 0.5, 𝜖𝜖𝑝𝑝 = 0.4 and 𝛼𝛼𝑗𝑗 = 1.45� 
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Figure 3 

 
Figure 3 Drag Plots for Varying Porous Layer Thickness ϵ_p, using the Different Unit Cell 
Techniques. (𝛽𝛽 = 0.5,𝑁𝑁 = 0.5,𝑚𝑚 = 10,𝜙𝜙 = 0.5,𝛼𝛼 = 3 and 𝛼𝛼𝑗𝑗 = 1.45� 

 
Figure 4 

 
Figure 4 Drag Plots for Varying Porosity ϕ, using the Different Unit Cell Techniques. 
�𝛽𝛽 = 0.5,𝑁𝑁 = 0.5,𝑚𝑚 = 10, 𝜖𝜖𝑝𝑝 = 0.4,𝛼𝛼 = 3 and 𝛼𝛼𝑗𝑗 = 1.45� 

 

The values of 𝐷𝐷𝑙𝑙
(𝑈𝑈) for the different plots is much higher than 𝐷𝐷𝑙𝑙, for an 

unbounded single porous shell in a micropolar fluid. The porosity, 𝜙𝜙 = 0.5, used in 
most of the plots, coincides with 𝑟𝑟𝑒𝑒 = 1.26. The outer cell envelope where the 
boundary conditions are imposed is 0.26 units away from the outer porous surface. 
To reproduce the results for an unbounded fluid, 𝑟𝑟𝑒𝑒 → ∞, or 𝜙𝜙 → 1. From observing 
Figure 3, as 𝜙𝜙 → 1,𝐷𝐷𝑙𝑙

(𝑈𝑈) decreases drastically. 



Dr. Curtis Boodoo 
 

International Journal of Engineering Technologies and Management Research 50 
 

There is a decrease in 𝐷𝐷𝑙𝑙
(𝑈𝑈) as 𝛼𝛼, increases (Figure 1). Higher values of 𝛼𝛼, 

coincide with lower values of permeability 𝑘𝑘. The fluid experiences a greater 
resistance to fluid flow within the porous region. A lower volume of fluid 
penetrating the porous shell means lower frictional forces experience by the shell 
and hence a lower 𝐷𝐷𝑙𝑙

(𝑈𝑈). This behavior was also present in the single porous shell 
model. 

As the thickness of the porous layer 𝜖𝜖𝑝𝑝, increases there is an overall decrease in 
𝐷𝐷𝑙𝑙

(𝑈𝑈) for the Happel, Kvashnin and Kuwabara unit cell models. This is opposite for 
the Mehta and Morse unit cell model where 𝐷𝐷𝑙𝑙

(𝑈𝑈) decrease as 𝜖𝜖𝑝𝑝 increases. The drag 
𝐷𝐷𝑙𝑙, for the single porous shell decreases as 𝜖𝜖𝑝𝑝 is increased. This behavior matches 
𝐷𝐷𝑙𝑙

(𝑈𝑈) with 𝜖𝜖𝑝𝑝 for the Mehta and Morse unit cell model. 
 
4. CONCLUSIONS AND RECOMMENDATIONS  

The analysis of the dimensionless drag 𝐷𝐷𝑙𝑙
(𝑈𝑈), through the lens of various unit 

cell techniques, as presented in Figure 1 to Figure 3, provides a deeper 
understanding of fluid dynamics in porous media. The results indicate a consistent 
inverse relationship between hydraulic resistivity, α, and drag across all unit cell 
models, as demonstrated in Figure 1. This relationship suggests that an increase in 
hydraulic resistivity—and consequently a decrease in permeability—leads to a 
reduction in drag, due to diminished fluid penetration and lower frictional forces. 

Figure 2 further elaborates on the effects of porous layer thickness, 𝜖𝜖𝑝𝑝, on drag, 
showcasing that an increase in thickness typically correlates with a decrease in drag 
within the Happel, Kvashnin, and Kuwabara models. Contrastingly, the Mehta and 
Morse model exhibits an anomalous increase in drag with increasing porous layer 
thickness, suggesting a complex interaction between porous layer geometry and 
fluid flow that warrants experimental investigation. 

The dependency of drag on porosity, ϕ, is visually captured in Figure 3. As 
porosity approaches unity, we observe a steep decline in drag, indicating that higher 
porosity levels are conducive to reduced fluid resistance. This trend aligns with the 
theoretical expectations for unbounded fluids, where higher porosity equates to 
lesser obstruction to fluid flow. 

The consistent inverse relationship between hydraulic resistivity and drag, 
across all unit cell models, as shown in Figure 1, is particularly relevant for 
optimizing heat exchanger designs and improving the efficiency of cooling nuclear 
reactors. By strategically manipulating hydraulic resistivity, it may be possible to 
control fluid flow resistance to achieve desired temperature regulation more 
effectively. 

Figure 2’s illustration of the impact of porous layer thickness on drag, especially 
the unique trend exhibited by the Mehta and Morse model, has direct implications 
for the design of energy systems and the casting and injection processes of fluids. 
The understanding of how drag changes with layer thickness can aid in refining 
these processes to minimize energy loss and enhance the precision of fluid 
manipulation. 

Moreover, the significant reduction in drag with increasing porosity, as 
depicted in Figure 3, underpins the applications in biological systems, such as blood 
flow, where the reduction in drag can potentially lead to less damage to blood cells 
in artificial devices. This insight also extends to the extraction of crude oil, where 



Micropolar Fluid Flows Relative to a Swarm of Spherical Porous Shells 
 

International Journal of Engineering Technologies and Management Research 51 
 

increased porosity could be beneficial for reducing the energy required for 
extraction. 

In the specific context of drug delivery, where the study focuses, the ability to 
predict and control the hydrodynamics around porous particles becomes critically 
important. The cell models and corresponding drag behaviours analysed here can 
inform the design of drug delivery systems that rely on the micro-scale interactions 
between the drug-carrying particles and the surrounding fluid. This can lead to 
more efficient and targeted delivery, potentially improving therapeutic outcomes.  
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