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ABSTRACT 
Peristaltic transport, a fundamental physiological and engineering process, involves the 
movement of fluid through a distensible tube via sequential compression and relaxation. 
This study investigates the peristaltic transport of an incompressible Newtonian fluid in 
an axisymmetric, porous, corrugated tube, emphasizing the interplay between fluid 
dynamics and the tube's structural characteristics. Utilizing lubrication theory and 
perturbation analysis within a wave frame of reference, we explore the effects of 
hydraulic resistivity, geometric parameters of the corrugation, and porous layer 
thickness on the phenomena of trapping and circulation. Our findings reveal that 
hydraulic resistivity significantly influences the development of circulation regions 
within the fluid core, which has implications for the efficiency of mixing and nutrient 
absorption in biological and industrial applications. Additionally, the geometric 
configuration of the wavy porous layer—specifically its amplitude and thickness—
critically impacts the formation of trapping and circulation regions, thereby affecting 
fluid transport efficiency. This work not only advances our understanding of peristaltic 
pumping mechanisms but also highlights the potential for optimizing fluid transport 
processes in both biological systems and industrial applications. The insights gained from 
this study contribute to the design of more efficient peristaltic pumps and offer a valuable 
framework for future research aimed at enhancing substance delivery and mixing 
through peristaltic transport. 
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1. INTRODUCTION 
Peristaltic transport is the movement of fluid achieved by alternating 

compression and relaxation along a distensible tube, which propels the fluid. The 
principle of peristaltic transport of fluid is extensively utilized in industrial and 
commercial pumps. Peristaltic pumps use rotating rollers pressed against a 
distensible tube, creating a pressurized flow. The fluid is moved through the tube 
with each rotating motion. The major advantage of a peristaltic pump is that the only 
contact the fluid being pumped has with the peristaltic pump is in interior of the 
distensible tube. This allows isolation of the fluid from the environment of the pump 
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and is essential in the case of sterilized or hazardous fluid being transported Gupta 
& Gupta (2007). 

Peristaltic transport of fluid is common within the human body. Example of this 
include: urine flow from the kidney to the bladder, swallowing through the 
esophagus, movement of chyme in the gastro-intestinal tract, intra-uterine fluid 
motion, flow of spermatozoa in the ductus efferentes of the male reproductive tract, 
movement of ovum in the female fallopian tube, transport of lymph in the lymphatic 
vessels and the vasomotion of small blood vessels such as arterioles, venules and 
capillaries Shit et al. (2010). Earthworms also use peristalsis as a means of 
locomotion. 

The current study will focus on peristaltic transport in the human body, in 
particular transport in the gastro-intestinal tract and capillaries. Epithelial cells line 
major cavities and organs of the body. These include the stomach and small 
intestine, kidney, pancreas, and esophagus. Epithelial cells also form the structure 
of the lung. The epithelial cells that line capillaries are referred to as endothelial 
cells. Epithelial cells serve many functions which include transportation and 
absorption of nutrients. Absorption of nutrients by epithelial cells is accomplished 
by a process called transcytosis. Transcytosis occurs as membrane-bound carriers 
selectively transport materials between one part of the cell and another to maintain 
unique environments on either side of the cell Barnes et al. (2008). The selective 
absorption of nutrients or materials by epithelial cells facilitates modeling epithelial 
cells as porous media. This motivates the formulation of the current model. 

Early studies in peristaltic pumping was carried out by Shapiro et al. (1969). 
They investigated peristaltic pumping under small Reynolds number and a large 
tube aspect ratio to allow uniform pressure distribution over the tube cross section. 
They presented results for varying geometric parameters and introduced, 
explained, and illustrated reflux flow. They also referred to an experiment that 
confirmed their findings. They applied their model for peristaltic pumping to the 
gastro-intestinal system. 

Barton & Raynor (1968) explored the case where the wall disturbance 
wavelength is much larger than the average tube radius, and when the disturbance 
wavelength may be as small as the average radius. They used numerical techniques 
to determine the relation between average flow rate and pressure differential across 
a wavelength. 

Wei et al. (2003) investigated pressure driven flow of a Newtonian fluid in a 
two dimensional wavy, poro-elastic, cartesian walled channel. Biphasic mixing 
theory is employed for the poro-elastic layer and the flow is solved by a lubrication 
approximation using the aspect ratio of the channel. They obtained the velocity 
fields using a perturbation approach and discussed the fluid flow and geometrical 
parameters that develop and influence trapping or recirculation eddies within the 
Newtonian fluid. 

Mishra & Rao (2008) studied peristaltic transport in an axisymmetric tube, with 
a Brinkman porous peripheral region and a Newtonian fluid core region, using the 
lubrication approach. They allowed for deformation of the porous-fluid interface by 
determining the interface as part of the solution using the conservation of mass in 
both the porous medium and fluid medium separately. They used a shear stress 
jump condition at the interface between the peripheral and core regions. Pumping 
characteristics, trapping, and reflux phenomena are discussed for various 
parameters governing the flow. 

In this present study, peristaltic transport of an incompressible Newtonian fluid 
in an axisymmetric, porous, corrugated, or wavy tube is investigated. The porous 
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layer is modelled as a Darcy region with a transition Brinkman layer. The analysis is 
performed in a wave frame of reference. Lubrication theory as well as perturbation 
analysis is used to solve the velocity field and pressure. The boundary conditions 
used at the Brinkman-fluid interface include jump in tangential stress, continuity or 
normal stresses and continuity of radial and axial velocities. The boundary 
conditions at the Brinkman-Darcy interface include the Beavers and Joseph 
boundary condition and continuity of normal stresses. The phenomena of reflux or 
recirculation is observed and its dependency on the fluid flow parameters of 
hydraulic resistivity, tangential stress jump and the Darcy slip parameter is studied 
from streamline and velocity field plots. 

 
2. MODEL FORMULATION 

Peristaltic pumping is modeled as the motion of an infinite wave train along an 
axis symmetric porous cylindrical tube. The tube core is filled, and the porous layer 
saturated with the same incompressible viscous Newtonian fluid. The equation of 
the infinite wave train at the outer walls of the porous media, in cylindrical polar 
coordinates is given by: 

 
𝑅𝑅 = 𝐵𝐵1 = 𝑏𝑏(1 + 𝑎𝑎cos 2𝜋𝜋(𝑍𝑍 − 𝑐𝑐𝑐𝑐)) 

 
where 𝑐𝑐 : is the constant velocity of the wave train to the right in the Z direction 

and 𝑎𝑎𝑏𝑏 is the amplitude of the wave train. The thickness of the porous region is 
denoted by 𝜖𝜖1. The porous region is modeled using Darcy's equation. A Brinkman 
transition layer is used between the Darcy region and the core fluid to allow for 
better matching between the core Newtonian fluid and the Darcy porous region. The 
thickness of the Brinkman transition layer is represented by 𝜖𝜖2. 

The equation representing the Core - Brinkman interface is: 
 

𝐻𝐻1 = 𝑏𝑏(1 + 𝑎𝑎cos 2𝜋𝜋(𝑍𝑍 − 𝑐𝑐𝑐𝑐)) − 𝜖𝜖1𝑏𝑏 
 
The equation representing the Brinkman - Darcy interface is: 
 

𝐻𝐻2 = 𝑏𝑏(1 + 𝑎𝑎cos 2𝜋𝜋(𝑍𝑍 − 𝑐𝑐𝑐𝑐)) − (1 − 𝜖𝜖2)𝜖𝜖1𝑏𝑏 
 

Figure 1 

 
Figure 1 Wave Train in Fixed Frame of Reference. 
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Following the analysis of Shapiro et al. (1969), the fixed frame of reference 

coordinates 𝑍𝑍 and 𝑅𝑅 and axial velocity 𝑄𝑄𝑍𝑍 and radial velocity 𝑄𝑄𝑅𝑅 are transformed to 
the corresponding wave frame of reference variables 𝑧𝑧, 𝑟𝑟, 𝑞𝑞𝑧𝑧 and 𝑞𝑞𝑟𝑟  by performing 
the following transformations: 

 
𝑧𝑧 = 𝑍𝑍 − 𝑐𝑐𝑐𝑐, 𝑟𝑟 = 𝑅𝑅, 𝑞𝑞𝑧𝑧 = 𝑄𝑄𝑍𝑍 − 𝑐𝑐, 𝑞𝑞𝑟𝑟 = 𝑄𝑄𝑅𝑅  

 
In the fixed frame of reference, the outer wall of the Darcy region, moves with 

velocity 𝑄𝑄𝑍𝑍 = 𝑐𝑐, towards the right. In the wave frame of reference, the wave train 
appears stationary, and the outer wall of the Darcy region appears to move leftward 
with velocity 𝑐𝑐, 𝑞𝑞𝑧𝑧 = −𝑐𝑐. 

 
2.1. GOVERNING EQUATIONS - THE CORE AND POROUS 

REGION 
2.1.1. DIMENSIONLESS ANALYSIS 
The analysis is performed on the wave frame of reference. Following a similar 

analysis to Wei et al. (2003) the dimensionless quantities are: 
 

�̂�𝑟 =
𝑟𝑟
𝑏𝑏

, �̂�𝑧 =
𝑧𝑧
𝐿𝐿

, 𝑞𝑞𝑧𝑧� =
𝑄𝑄
𝑏𝑏

, 𝑞𝑞𝑟𝑟� =
𝑄𝑄
𝐿𝐿

 

 
For the pressure p: 
 

�̂�𝑝 =
𝑝𝑝

𝜇𝜇1𝑄𝑄𝐿𝐿
𝑏𝑏3

 

 
Where 𝑄𝑄 is the characteristic volumetric flow rate per unit depth into the tube, 

𝜌𝜌 the density of the fluid and 𝜇𝜇1 and 𝜇𝜇2 the viscosity of the fluid in the core and the 
porous regions respectively. 

The aspect ratio 𝛿𝛿 is defined as: 
 

𝛿𝛿 =
𝑏𝑏
𝐿𝐿

 

 
And Reynolds number 𝑅𝑅𝑅𝑅 is given by 
 

𝑅𝑅𝑅𝑅 =
𝜌𝜌𝑄𝑄𝐿𝐿
𝜇𝜇1𝑏𝑏

 

 
The interfaces 𝐻𝐻1 and 𝐻𝐻2 and the porous wall 𝐵𝐵1 are dimensionless and given 

by: 
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𝑏𝑏1 =
𝐵𝐵1
𝑏𝑏

= 1 + 𝑎𝑎cos 2𝜋𝜋𝑧𝑧

ℎ1 =
𝐻𝐻1
𝑏𝑏

= 1 + 𝑎𝑎cos 2𝜋𝜋𝑧𝑧 − 𝜖𝜖1

ℎ2 =
𝐻𝐻2
𝑏𝑏

= 1 + 𝑎𝑎cos 2𝜋𝜋𝑧𝑧 − 𝜖𝜖1(1 − 𝜖𝜖2)

 

 
For simplicity, the hats are dropped from the dimensionless variables in the 

analysis that follows. 
 

2.1.2. DIMENSIONLESS CORE REGION 
In this region, we use the continuity equation: 
 

1
𝑟𝑟
∂
∂𝑟𝑟

(𝑟𝑟𝑞𝑞𝑟𝑟) +
∂
∂𝑧𝑧
𝑞𝑞𝑧𝑧 = 0 

 
and the Navier Stokes equation: 
 

𝛿𝛿4Re �𝑞𝑞𝑟𝑟
∂𝑞𝑞𝑟𝑟
∂𝑟𝑟

+ 𝑞𝑞𝑧𝑧
∂𝑞𝑞𝑟𝑟
∂𝑧𝑧

� = −
∂𝑝𝑝
∂𝑟𝑟

+ 𝛿𝛿2 �
1
𝑟𝑟
∂
∂𝑟𝑟
�𝑟𝑟
∂𝑞𝑞𝑟𝑟
∂𝑟𝑟

� −
𝑞𝑞𝑟𝑟
𝑟𝑟2
� + 𝛿𝛿4

∂2𝑞𝑞𝑟𝑟
∂𝑧𝑧2

Re �𝛿𝛿3𝑞𝑞𝑟𝑟
∂𝑞𝑞𝑟𝑟
∂𝑟𝑟

+ 𝛿𝛿2𝑞𝑞𝑧𝑧
∂𝑞𝑞𝑧𝑧
∂𝑧𝑧

� = −
∂𝑝𝑝
∂𝑧𝑧

+
1
𝑟𝑟
∂
∂𝑟𝑟
�𝑟𝑟
∂𝑞𝑞𝑧𝑧
∂𝑟𝑟

� + 𝛿𝛿2
∂2𝑞𝑞𝑧𝑧
∂𝑧𝑧2

 

 
2.1.3. DIMENSIONLESS BRINKMAN REGION 
In the Brinkman region 𝑞𝑞𝑟𝑟𝑏𝑏 and 𝑞𝑞𝑧𝑧𝑏𝑏 represent the radial and axial velocities 

respectively. 𝑝𝑝𝑏𝑏 represents the pressure, 𝜙𝜙 represents the volume fraction of 
the fluid in the porous layer and 𝑚𝑚 = 𝜇𝜇2

𝜇𝜇1
. The dimensionless hydraulic resistivity 

𝛼𝛼 is defined in terms of the Darcy permeability parameter 𝑘𝑘. 
 

𝛼𝛼2 =
𝑏𝑏2

𝑘𝑘
 

 
The equations are: 
 

1
𝑟𝑟
∂
∂𝑟𝑟
�𝑟𝑟𝑞𝑞𝑟𝑟𝑏𝑏� +

∂
∂𝑧𝑧
𝑞𝑞𝑧𝑧𝑏𝑏 = 0

∂𝑝𝑝𝑏𝑏

∂𝑟𝑟
= −𝛼𝛼2𝛿𝛿3𝑞𝑞𝑟𝑟𝑏𝑏 + 𝑚𝑚 �

𝛿𝛿2

𝑟𝑟
∂
∂𝑟𝑟
�𝑟𝑟
∂𝑞𝑞𝑟𝑟𝑏𝑏

∂𝑟𝑟
� + 𝛿𝛿4

∂2𝑞𝑞𝑟𝑟𝑏𝑏

∂𝑧𝑧2
− 𝛿𝛿2

𝑞𝑞𝑟𝑟𝑏𝑏

𝑟𝑟2
�
 

∂𝑝𝑝𝑏𝑏

∂𝑧𝑧
= −𝛼𝛼2𝑞𝑞𝑧𝑧𝑏𝑏 + 𝑚𝑚 �

1
𝑟𝑟
∂
∂𝑟𝑟
�𝑟𝑟
∂𝑞𝑞𝑧𝑧𝑏𝑏

∂𝑟𝑟
� + 𝛿𝛿2

∂2𝑞𝑞𝑧𝑧𝑏𝑏

∂𝑧𝑧2
� 

 
2.1.4. DIMENSIONLESS DARCY REGION 
In the Darcy region 𝑞𝑞𝑟𝑟𝑑𝑑 and 𝑞𝑞𝑧𝑧𝑑𝑑 represents the radial and axial velocities 

respectively and 𝑝𝑝𝑑𝑑 represents the pressure. The equations are: 
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∂𝑝𝑝𝑑𝑑

∂𝑟𝑟
= −𝛿𝛿2𝛼𝛼2𝑞𝑞𝑟𝑟𝑑𝑑

∂𝑝𝑝𝑑𝑑

∂𝑧𝑧
= −𝛼𝛼2𝑞𝑞𝑧𝑧𝑑𝑑

1
𝑟𝑟
∂
∂𝑟𝑟
�𝑟𝑟𝑞𝑞𝑟𝑟𝑑𝑑� +

∂
∂𝑧𝑧
𝑞𝑞𝑧𝑧𝑑𝑑 = 0

 

 
2.1.5. DIMENSIONLESS BOUNDARY CONDITIONS 
The boundary conditions for the interfaces ℎ1,ℎ2 and 𝑏𝑏1 are now specified in 

non dimensional form. 
At 𝑟𝑟 = 0 
1) The axial core velocity 𝑞𝑞𝑧𝑧 and the radial core velocity 𝑞𝑞𝑟𝑟  are finite. 
At 𝑟𝑟 = ℎ1 
Jump in tangential stresses: 
 

�
∂𝑞𝑞𝑧𝑧𝑏𝑏

∂𝑟𝑟
+ 𝛿𝛿2

∂𝑞𝑞𝑟𝑟𝑏𝑏

∂𝑧𝑧
� −

1
𝑚𝑚
�
∂𝑞𝑞𝑧𝑧
∂𝑟𝑟

+ 𝛿𝛿2
∂𝑞𝑞𝑟𝑟
∂𝑧𝑧

� = 𝛼𝛼𝛼𝛼𝑞𝑞𝑧𝑧𝑏𝑏 

 
where 𝛼𝛼 is the stress jump parameter. 
 
2) Continuity of normal stresses: 
 

−𝑝𝑝 + 2𝛿𝛿2
∂𝑞𝑞𝑟𝑟
∂𝑟𝑟

= −𝑝𝑝𝑏𝑏 + 2𝑚𝑚𝛿𝛿2
∂𝑞𝑞𝑟𝑟𝑏𝑏

∂𝑟𝑟
 

 
3) Continuity of radial and axial velocities: 
 

𝑞𝑞𝑟𝑟 = 𝑞𝑞𝑟𝑟𝑏𝑏

𝑞𝑞𝑧𝑧 = 𝑞𝑞𝑧𝑧𝑏𝑏
 

 
At 𝑟𝑟 = ℎ2 
1) Beavers and Joseph boundary condition on the axial velocity. 
 

∂𝑞𝑞𝑧𝑧𝑏𝑏

∂𝑟𝑟
= 𝛼𝛼𝛼𝛼1�𝑞𝑞𝑧𝑧𝑏𝑏 − 𝑞𝑞𝑧𝑧𝑑𝑑� 

 
where 𝛼𝛼1 is the dimensionless parameter from Beavers and Joseph condition. 
 
2) Continuity of normal stresses: 

 

−𝑝𝑝𝑑𝑑 + 2𝛿𝛿2
∂𝑞𝑞𝑟𝑟𝑑𝑑

∂𝑟𝑟
= −𝑝𝑝𝑏𝑏 + 2𝑚𝑚𝛿𝛿2

∂𝑞𝑞𝑟𝑟𝑏𝑏

∂𝑟𝑟
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At 𝑟𝑟 = 𝑏𝑏1 
 
1) There is no penetration of the radial velocity at the outer wall. 

𝑞𝑞𝑟𝑟𝑑𝑑 = 0 
 
2) There is a non zero negative axial velocity Shapiro et al. (1969) 

𝑞𝑞𝑧𝑧𝑑𝑑 = −𝜖𝜖3 
 
The total characteristic volumetric flow rate along the tube is given by, 𝑄𝑄 ⋅ 𝑏𝑏, 

where 𝑄𝑄 is the characteristic volumetric flow rate per unit depth. By definition 
Chhabra & Richardson (2008): 

 

𝑄𝑄 ⋅ 𝑏𝑏 = �  
𝐻𝐻1

0
2𝜋𝜋𝑟𝑟𝑞𝑞𝑧𝑧𝑑𝑑𝑟𝑟 + �  

𝐻𝐻2

𝐻𝐻1
2𝜋𝜋𝑟𝑟𝑞𝑞𝑧𝑧𝑏𝑏𝑑𝑑𝑟𝑟 + �  

𝐵𝐵1

𝐻𝐻2
2𝜋𝜋𝑟𝑟𝑞𝑞𝑧𝑧𝑑𝑑𝑑𝑑𝑟𝑟 

 
Writing Eq3.3.24 in dimensionless form dropping the superscript hats: 
 

1
2𝜋𝜋

= �  
ℎ1

0
𝑟𝑟𝑞𝑞𝑧𝑧𝑑𝑑𝑟𝑟 + �  

ℎ2

ℎ1
𝑟𝑟𝑞𝑞𝑧𝑧𝑏𝑏𝑑𝑑𝑟𝑟 + �  

𝑏𝑏1

ℎ2
𝑟𝑟𝑞𝑞𝑧𝑧𝑑𝑑𝑑𝑑𝑟𝑟 

 
2.1.6. ASYMPTOTIC EXPANSION 
The geometry of the tube and the wave train is such that the average wavy 

variation of the wave train is small along the axial direction. The aspect ratio 𝛿𝛿 ≪ 1. 
A perturbation series in 𝛿𝛿 is now employed for the flow field variables. 

 
(𝑞𝑞𝑧𝑧, 𝑞𝑞𝑟𝑟 ,𝑝𝑝) = (𝑞𝑞𝑧𝑧0, 𝑞𝑞𝑟𝑟0,𝑝𝑝0) + 𝛿𝛿2(𝑞𝑞𝑧𝑧2, 𝑞𝑞𝑟𝑟2,𝑝𝑝2) + ⋯
�𝑞𝑞𝑧𝑧𝑏𝑏 ,𝑞𝑞𝑟𝑟𝑏𝑏 ,𝑝𝑝𝑏𝑏� = �𝑞𝑞𝑧𝑧0𝑏𝑏 , 𝑞𝑞𝑟𝑟0𝑏𝑏 ,𝑝𝑝0𝑏𝑏� + 𝛿𝛿2�𝑞𝑞𝑧𝑧2𝑏𝑏 , 𝑞𝑞𝑟𝑟2𝑏𝑏 ,𝑝𝑝2𝑏𝑏� + ⋯

 

�𝑞𝑞𝑧𝑧𝑑𝑑 ,𝑞𝑞𝑟𝑟𝑑𝑑 ,𝑝𝑝𝑑𝑑� = �𝑞𝑞𝑧𝑧0𝑑𝑑 , 𝑞𝑞𝑟𝑟0𝑑𝑑 ,𝑝𝑝0𝑑𝑑� + 𝛿𝛿2�𝑞𝑞𝑧𝑧2𝑑𝑑 , 𝑞𝑞𝑟𝑟2𝑑𝑑 ,𝑝𝑝2𝑑𝑑� + ⋯ 
 
The dimensionless governing equations and the corresponding boundary 

conditions do not contain expressions in 𝛿𝛿1, again following an analysis similar to 
Wei et al. (2003), the perturbation series first order term is in 𝛿𝛿2. Collecting the 
leading order and first order terms gives the corresponding leading order and first 
order systems. 

 
2.1.7. LEADING ORDER SYSTEM 
Core region: 

0 =
1
𝑟𝑟
∂
∂𝑟𝑟

(𝑟𝑟𝑞𝑞𝑟𝑟0) +
∂
∂𝑧𝑧
𝑞𝑞𝑧𝑧0

0 = −
∂𝑝𝑝0
∂𝑟𝑟

0 = −
∂𝑝𝑝0
∂𝑧𝑧

+
1
𝑟𝑟
∂
∂𝑟𝑟
�𝑟𝑟
∂𝑞𝑞𝑧𝑧0
∂𝑟𝑟

�
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Brinkman region: 

0 =
1
𝑟𝑟
∂
∂𝑟𝑟
�𝑟𝑟𝑞𝑞𝑟𝑟0𝑏𝑏 � +

∂
∂𝑧𝑧
𝑞𝑞𝑧𝑧0𝑏𝑏

0 =
∂𝑝𝑝0𝑏𝑏

∂𝑟𝑟
∂𝑝𝑝0𝑏𝑏

∂𝑧𝑧
 = −𝛼𝛼2𝑞𝑞𝑧𝑧0𝑏𝑏 + 𝑚𝑚 �

1
𝑟𝑟
∂
∂𝑟𝑟
�𝑟𝑟
∂𝑞𝑞𝑧𝑧0𝑏𝑏

∂𝑟𝑟
��

 

 
Darcy Region: 

0 =
∂𝑝𝑝0𝑑𝑑

∂𝑟𝑟

−𝛼𝛼2𝑞𝑞𝑧𝑧0𝑑𝑑  =
∂𝑝𝑝0𝑑𝑑

∂𝑧𝑧

0 =
1
𝑟𝑟
∂
∂𝑟𝑟
�𝑟𝑟𝑞𝑞𝑟𝑟0𝑑𝑑 � +

∂
∂𝑧𝑧
𝑞𝑞𝑧𝑧0𝑑𝑑

 

 
Boundary Conditions: 

𝛼𝛼𝛼𝛼𝑞𝑞𝑧𝑧0𝑏𝑏 =
∂𝑞𝑞𝑧𝑧0𝑏𝑏

∂𝑟𝑟
−

1
𝑚𝑚
�
∂𝑞𝑞𝑧𝑧0
∂𝑟𝑟

�  at 𝑟𝑟 = ℎ1

𝑞𝑞𝑟𝑟0 = 𝑞𝑞𝑟𝑟0𝑏𝑏  at 𝑟𝑟 = ℎ1
𝑞𝑞𝑧𝑧0 = 𝑞𝑞𝑧𝑧0𝑏𝑏  at 𝑟𝑟 = ℎ1
 −𝑝𝑝0 = −𝑝𝑝0𝑏𝑏  at 𝑟𝑟 = ℎ1
∂𝑞𝑞𝑧𝑧0𝑏𝑏

∂𝑟𝑟
= 𝛼𝛼𝛼𝛼1�𝑞𝑞𝑧𝑧0𝑏𝑏 − 𝑞𝑞𝑧𝑧0𝑑𝑑 � at 𝑟𝑟 = ℎ2

𝑞𝑞𝑧𝑧0𝑑𝑑 = −𝜖𝜖3 at 𝑟𝑟 = 𝑏𝑏1
1

2𝜋𝜋
= �  

ℎ1

0
 𝑟𝑟𝑞𝑞𝑧𝑧0𝑑𝑑𝑟𝑟 + �  

ℎ2

ℎ1
 𝑟𝑟𝑞𝑞𝑧𝑧0𝑏𝑏 𝑑𝑑𝑟𝑟 + �  

𝑏𝑏1

ℎ2
 𝑟𝑟𝑞𝑞𝑧𝑧0𝑑𝑑 𝑑𝑑𝑟𝑟

𝑞𝑞𝑟𝑟0𝑑𝑑 = 0 at 𝑟𝑟 = 𝑏𝑏1
 −𝑝𝑝0𝑑𝑑 = −𝑝𝑝0𝑏𝑏  at 𝑟𝑟 = ℎ2

 

 
2.1.8. SOLUTION TO THE LEADING ORDER SYSTEM 
Core region 

𝑞𝑞𝑟𝑟0 = −
𝑟𝑟3

16
𝑑𝑑2𝑝𝑝0
𝑑𝑑𝑧𝑧2

−
𝑟𝑟
2
𝑑𝑑𝐶𝐶2
𝑑𝑑𝑧𝑧

 

 
Brinkman region 

𝑞𝑞𝑟𝑟0𝑏𝑏 =
𝑚𝑚
𝛼𝛼2

�−
𝑑𝑑𝐶𝐶1𝑏𝑏

𝑑𝑑𝑧𝑧
𝜔𝜔𝐼𝐼1(𝜔𝜔𝑟𝑟) +

𝑑𝑑𝐶𝐶2𝑏𝑏

𝑑𝑑𝑧𝑧
𝜔𝜔𝐾𝐾1(𝜔𝜔𝑟𝑟)� +

𝐶𝐶3𝑏𝑏

𝑟𝑟
+

𝑟𝑟
2𝛼𝛼2

𝑑𝑑2𝑝𝑝0𝑏𝑏

𝑑𝑑𝑧𝑧2
 

 
Darcy region 

𝑞𝑞𝑟𝑟0𝑑𝑑 =
1
𝛼𝛼2

𝑑𝑑2𝑝𝑝0𝑑𝑑

𝑑𝑑𝑧𝑧2
𝑟𝑟
2

+
𝐾𝐾𝑑𝑑
𝑟𝑟

 

 
where the terms: 𝐶𝐶2,𝐶𝐶1𝑏𝑏 ,𝐶𝐶2𝑏𝑏 ,𝐶𝐶3𝑏𝑏 and 𝐾𝐾𝑑𝑑 are all functions of 𝑧𝑧 
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2.1.9. OBTAINING THE CONSTANTS 
The boundary conditions are now applied and expressions for the constants 

𝐶𝐶2,𝐶𝐶1𝑏𝑏 ,𝐶𝐶2𝑏𝑏 ,𝐶𝐶3𝑏𝑏 and 𝐾𝐾𝑑𝑑 are obtained. 
 

𝐶𝐶1𝑏𝑏 =
�𝜔𝜔𝐾𝐾1(𝜔𝜔ℎ2) + 𝛼𝛼𝛼𝛼1𝐾𝐾0(𝜔𝜔ℎ2)� �𝛼𝛼𝛼𝛼 −

1
2
ℎ1
𝑚𝑚�𝛼𝛼

2𝜖𝜖3

𝑐𝑐11𝑏𝑏 + 𝑐𝑐12𝑏𝑏

𝐶𝐶2𝑏𝑏 =
�𝜔𝜔𝐼𝐼1(𝜔𝜔ℎ2) − 𝛼𝛼𝛼𝛼1𝐼𝐼0(𝜔𝜔ℎ2)� �𝛼𝛼𝛼𝛼 −

1
2
ℎ1
𝑚𝑚�𝛼𝛼

2𝜖𝜖3

𝑐𝑐11𝑏𝑏 + 𝑐𝑐12𝑏𝑏

 

 
where: 

𝑐𝑐11𝑏𝑏 =𝜔𝜔2𝐼𝐼1(𝜔𝜔ℎ1)𝐾𝐾1(𝜔𝜔ℎ2) + 𝛼𝛼𝛼𝛼1𝜔𝜔𝐼𝐼1(𝜔𝜔ℎ1)𝐾𝐾0(𝜔𝜔ℎ2)
 −𝛼𝛼𝛼𝛼𝜔𝜔𝐼𝐼0(𝜔𝜔ℎ1)𝐾𝐾1(𝜔𝜔ℎ2) − 𝛼𝛼2𝛼𝛼1𝛼𝛼𝐼𝐼0(𝜔𝜔ℎ1)𝐾𝐾0(𝜔𝜔ℎ2)

𝑐𝑐12𝑏𝑏 =𝜔𝜔𝛼𝛼𝛼𝛼1𝐾𝐾1(𝜔𝜔ℎ1)𝐼𝐼0(𝜔𝜔ℎ2) −𝜔𝜔2𝐾𝐾1(𝜔𝜔ℎ1)𝐼𝐼1(𝜔𝜔ℎ2)
 −𝛼𝛼𝛼𝛼𝜔𝜔𝐾𝐾0(𝜔𝜔ℎ1)𝐼𝐼1(𝜔𝜔ℎ2) + 𝛼𝛼1𝛼𝛼2𝛼𝛼𝐾𝐾0(𝜔𝜔ℎ1)𝐼𝐼0(𝜔𝜔ℎ2)

 

𝐶𝐶2 = 𝐼𝐼0(𝜔𝜔ℎ1)𝐶𝐶1𝑏𝑏 + 𝐾𝐾0(𝜔𝜔ℎ1)𝐶𝐶2𝑏𝑏 − 𝜖𝜖3 �1 +
𝛼𝛼2ℎ12

4
� 

𝐶𝐶3𝑏𝑏 = −
ℎ1

2𝛼𝛼2
�ℎ1𝛼𝛼2

𝑑𝑑𝐶𝐶2
𝑑𝑑𝑧𝑧

− 2𝑚𝑚𝜔𝜔
𝑑𝑑𝐶𝐶1𝑏𝑏

𝑑𝑑𝑧𝑧
𝐼𝐼1(𝜔𝜔ℎ1) + 2𝑚𝑚𝜔𝜔

𝑑𝑑𝐶𝐶2𝑏𝑏

𝑑𝑑𝑧𝑧
𝐾𝐾1(𝜔𝜔ℎ1)� 

 
3. RESULTS AND DISCUSSIONS  

The analytical expressions obtained for the stream functions and velocities for 
the different regions is now presented in their corresponding domains. These 
domains are complex two-dimensional regions, which comprises sinusoidal 
boundaries. The regions are meshed, using a triangular mesh, and the co-ordinates 
of each node substituted into the analytical expression for the stream function to 
obtain the velocity field and stream function plots that follow. 
Figure 2 

 
Figure 2 Triangular Meshing for the Different Domains 
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The analysis that follows is done in the wave frame of reference. The ratio, 𝑚𝑚 =

𝜇𝜇2
𝜇𝜇1

.is given by Einstein's law of viscosity 𝜇𝜇2
𝜇𝜇1

= 1 + 2.5(1 − 𝜙𝜙) Goyeau et al. (2003). 
The thickness of the transition Brinkman layer 𝜖𝜖2 is the average pore size of the 
porous medium Goharzadeh et al. (2005)  

The values of the other constants used are: 
 

𝐿𝐿 = 4, 𝑏𝑏 = 0.4, 𝜖𝜖1 = 0.1, 𝜖𝜖2 = 0.01, 𝜖𝜖3 = 0.05,𝜙𝜙 = 0.4, 
 
It should be noted that from Eq(3.3.59) and Eq(3.3.60) the radial velocity in the 

Darcy region 𝑞𝑞𝑟𝑟𝑑𝑑 = 0 and the axial velocity in the Darcy region 𝑞𝑞𝑧𝑧𝑑𝑑 = −𝜖𝜖3 hence in the 
Darcy region there is only a axial velocity. 

In the streamline plots that follow, the fluid core region streamlines are red, the 
thin transition Brinkman layer is green and the Darcy region has purple streamlines. 
The color of the arrows in the velocity field plots represents velocity magnitudes. 
Dark blue represents the lowest velocities and red the highest velocities. 
Figure 3 

 
Figure 3 Streamlines (Top Pair) and the Corresponding Velocity Field (Bottom Pair) for α – 250 and 
10:(a=0.2,α_j=1.45,β=1.47,ϵ_2=┤ 0.02,ϕ=0.4,ϵ_1=0.2, and ϵ_3=0.05 ) 
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Figure 4 

 
Figure 4 Core Region Streamlines and Velocity Fields for Varying a:(β= 1.47, 
α=50,α_j=1.45,ϵ_2=0.02,ϕ=0.4,ϵ_1=0.2 and ├ ϵ_3=0.05) 

 
Figure 5 

 
Figure 5 Core Region Streamlines and Velocity Fields for Varying ϵ_1:(β= 
1.47,α=50,α_j=1.45,ϕ=0.4,a=0.2 and ├ ϵ_3=0.05) 
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3.1. DISCUSSION 
Trapping and Circulation as 𝜶𝜶 is varied. 
The phenomena of trapping was discussed by Shapiro et al. (1969). They 

defined trapping as the region of fluid having a mean speed of advance equal to the 
wave speed. The fluid is hence trapped in that it moves at least in the mean, with the 
wave itself. In the trapping region there is a recirculation of fluid particles. 

Trapping is observed in the fluid core region of the streamlines and velocity 
field plots for varying hydraulic resistivity 𝛼𝛼, Figure 3. The values of 𝛼𝛼, chosen for 
the plots satisfies the range of values of 𝛼𝛼, given by Wei et al. (2003) for capillaries 
in the human body. In the fluid core region, for 𝛼𝛼 = 250,and 10, the streamlines 
under the peaks of the porous region bend upwards, representing the circulating 
path that the fluid particles in this region assume. This is confirmed in the 
corresponding velocity field plots, Figure 3, where under the porous peaks there is 
a circulating velocity field. This result is different from that presented by Wei et al. 
(2003), where they observed circulation inside the peaks of the poroelastic region, 
which they modeled using mixing theory. Circulation regions, in the core fluid, under 
the peaks of the porous region was observed by Mishra & Rao (2008). They used a 
Brinkman model for the porous region and under the lubrication approach assumed 
the radial velocity 𝑞𝑞𝑟𝑟  of the core region to be negligible. Hence the circulation 
regions they observed were solely due to the fluid core region, axial velocity 𝑞𝑞𝑧𝑧 and 
not the superposition of 𝑞𝑞𝑟𝑟  and 𝑞𝑞𝑧𝑧 as presented here. When 𝛼𝛼 = 10, the circulation 
region increases in size to almost the entire radius of the tube.  

It is important to study the magnitude of the velocity fields, given by the colors 
of the field arrows. Within the circulation regions, the fluid velocity is at its slowest, 
this is illustrated by the blue color of the velocity field. Fluid or in the case of the 
human body, material, or nutrients, in this region, circulate at a slow speed or have 
a greater resident time. This allows for more efficient mixing and absorption of 
nutrients into the porous region underneath the peaks. Wei et al. (2003) commented 
that the circulation regions they observed inside the peaks of the poroelastic region 
allows a greater resident time for fluid particles near the adjacent trough. This is not 
the case for the core fluid in this model, in fact from the velocity field plots, the 
troughs adjacent to the circulating peak regions have a higher velocity than the 
circulating fluid. 

 
Geometric effects on trapping and circulation. 
From Figure 4, the amplitude 𝑎𝑎 of the wavy porous region affects trapping. An 

increase in α increases the trapping region under the porous peaks. From the 
velocity field plots, as 𝑎𝑎 is increased, there is a greater separation of lower velocity 
regions under the porous peaks. This result matches that of Pozrikidis (2005) and 
the comments of Wei et al. (2003). 

 
Affects of porous layer thickness, 𝝐𝝐𝟏𝟏 
Porous layer thickness 𝜖𝜖1 affects circulation and trapping. This is illustrated in 

Figure 5. For 0.05 ≤ 𝜖𝜖1 ≤ 0.2 the circulation region under the porous peaks 
increases in size. When 𝜖𝜖1 ≥ 0.3 the circulation regions maintains, approximately, a 
fixed size, but with the increase in porous layer thickness, the circulation region is 
pushed downwards towards the center of the tube. 
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4. CONCLUSIONS AND RECOMMENDATIONS  

This study has explored the intricate dynamics of peristaltic transport of an 
incompressible Newtonian fluid within an axisymmetric, porous, corrugated tube, 
utilizing a comprehensive analytical framework that incorporates porous layer 
theory and perturbation analysis. Our investigation reveals the critical role of 
hydraulic resistivity, geometric parameters of the wavy porous structure, and the 
porous layer thickness in shaping the transport characteristics, particularly in terms 
of trapping and circulation phenomena. 

The study demonstrates that the hydraulic resistivity parameter, α, plays a 
pivotal role in the formation of circulation regions within the fluid core, with 
significant implications for the efficiency of mixing and nutrient absorption 
processes. This finding not only corroborates the observations made by previous 
studies but also extends our understanding by highlighting the influence of the 
Brinkman model in capturing the nuances of fluid behavior in the core region 
adjacent to the porous peaks. 

Furthermore, the geometric configuration of the wavy porous layer, especially 
its amplitude and thickness, is shown to have a profound impact on the trapping and 
circulation regions. An increase in the amplitude of the wavy porous region 
amplifies the trapping phenomenon, while the thickness of the porous layer dictates 
the extent and positioning of circulation regions, thereby affecting the overall 
transport efficiency within the tube. 

This work contributes significantly to the body of knowledge on peristaltic 
pumping, particularly in the context of biological and industrial applications where 
the isolation and precise control of fluid transport are paramount. The insights 
garnered from our model underscore the potential of peristaltic transport 
mechanisms to optimize fluid flow and enhance the delivery and mixing of 
substances, whether in medical devices, industrial processes, or within the human 
body.  

  
CONFLICT OF INTERESTS  

None.   
 
ACKNOWLEDGMENTS 

None. 
 
REFERENCES 

Barnes, P. J., Drazen, J. M., Rennard, S. I., & Thomson, N. C. (2008). Asthma and COPD: 
Basic Mechanisms and Clinical Management. Academic Press.   

Barton, C., & Raynor, S. (1968). Peristaltic Flow in Tubes. The Bulletin of 
Mathematical Biophysics, 30(4), 663–680. 
https://doi.org/10.1007/BF02476682  

Chhabra, R. P., & Richardson, J. F. (2008). Non-Newtonian Flow and Applied 
Rheology: Engineering Applications. Butterworth-Heinemann.   

Goharzadeh, A., Khalili, A., & Jo̸rgensen, B. B. (2005). Transition Layer Thickness at 
a Fluid-Porous Interface. Physics of Fluids, 17(5), 057102. 
https://doi.org/10.1063/1.1894796  

Gupta, A. K., & Gupta. (2007). Industrial Automation and Robotics. Firewall Media. 

https://books.google.co.in/books/about/Asthma_and_COPD.html?id=BbDwAAAAQBAJ&redir_esc=y
https://books.google.co.in/books/about/Asthma_and_COPD.html?id=BbDwAAAAQBAJ&redir_esc=y
https://doi.org/10.1007/BF02476682
https://doi.org/10.1007/BF02476682
https://doi.org/10.1007/BF02476682
https://books.google.co.in/books/about/Non_Newtonian_Flow_and_Applied_Rheology.html?id=_6nnoh9PtF0C&redir_esc=y
https://books.google.co.in/books/about/Non_Newtonian_Flow_and_Applied_Rheology.html?id=_6nnoh9PtF0C&redir_esc=y
https://doi.org/10.1063/1.1894796
https://doi.org/10.1063/1.1894796
https://doi.org/10.1063/1.1894796
https://dx.doi.org/10.29121/ijetmr.v11.i2.2024.1407


Modeling and Optimization of Peristaltic Fluid Transport in Axisymmetric, Porous Structures 
 

International Journal of Engineering Technologies and Management Research 32 
 

Mishra, M., & Rao, A. R. (2008). Peristaltic Flow of a Two-Layer System in a 
Poroflexible Tube. Journal of Porous Media, 11(1), 51–71. 
https://doi.org/10.1615/JPorMedia.v11.i1.40  

Pozrikidis, C. (2005). Axisymmetric Motion of a File of Red Blood Cells Through 
Capillaries. Physics of Fluids, 17(3), 031503-031503–031514. 
https://doi.org/doi:10.1063/1.1830484  

Shapiro, A. H., Jaffrin, M. Y., & Weinberg, S. L. (1969). Peristaltic Pumping with Long 
Wavelengths at Low Reynolds Number. Journal of Fluid Mechanics, 37(04), 
799–825. https://doi.org/10.1017/S0022112069000899  

Shit, G. C., Roy, M., & Ng, E. Y. K. (2010). Effect of Induced Magnetic Field on 
Peristaltic Flow of a Micropolar Fluid in an Asymmetric Channel, 1007.0923. 
https://doi.org/10.1002/cnm.1397  

Wei, H. H., Waters, S. L., Liu, S. Q., & Grotberg, J. B. (2003). Flow in a Wavy-Walled 
Channel Lined with a Poroelastic Layer. Journal of Fluid Mechanics, 492, 23–
45. https://doi.org/10.1017/S0022112003005378  

       
 
 
 
 
 
 

https://doi.org/10.1615/JPorMedia.v11.i1.40
https://doi.org/10.1615/JPorMedia.v11.i1.40
https://doi.org/10.1615/JPorMedia.v11.i1.40
https://doi.org/doi:10.1063/1.1830484
https://doi.org/doi:10.1063/1.1830484
https://doi.org/doi:10.1063/1.1830484
https://doi.org/10.1017/S0022112069000899
https://doi.org/10.1017/S0022112069000899
https://doi.org/10.1017/S0022112069000899
https://doi.org/10.1002/cnm.1397
https://doi.org/10.1002/cnm.1397
https://doi.org/10.1002/cnm.1397
https://doi.org/10.1017/S0022112003005378
https://doi.org/10.1017/S0022112003005378
https://doi.org/10.1017/S0022112003005378

	Modeling and Optimization of Peristaltic Fluid Transport in Axisymmetric, Porous Structures
	Dr. Curtis Boodoo 1
	1 Utilities and Sustainable Engineering, The University of Trinidad and Tobago, Trinidad and Tobago


	1. INTRODUCTION
	2. MODEL FORMULATION
	Figure 1
	2.1. Governing Equations - the Core and Porous region
	2.1.1. Dimensionless Analysis
	2.1.2. Dimensionless Core region
	2.1.3. Dimensionless Brinkman Region
	2.1.4. Dimensionless Darcy region
	2.1.5. Dimensionless Boundary Conditions
	2.1.6. Asymptotic Expansion
	2.1.7. Leading Order System
	2.1.8. Solution to the leading order system
	2.1.9. Obtaining the Constants


	3. RESULTS AND DISCUSSIONS
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	3.1. Discussion

	4. CONCLUSIONS And RECOMMENDATIONS
	CONFLICT OF INTERESTS
	ACKNOWLEDGMENTS
	REFERENCES
	Barnes, P. J., Drazen, J. M., Rennard, S. I., & Thomson, N. C. (2008). Asthma and COPD: Basic Mechanisms and Clinical Management. Academic Press.
	Barton, C., & Raynor, S. (1968). Peristaltic Flow in Tubes. The Bulletin of Mathematical Biophysics, 30(4), 663–680. https://doi.org/10.1007/BF02476682
	Chhabra, R. P., & Richardson, J. F. (2008). Non-Newtonian Flow and Applied Rheology: Engineering Applications. Butterworth-Heinemann.
	Goharzadeh, A., Khalili, A., & Jo̸rgensen, B. B. (2005). Transition Layer Thickness at a Fluid-Porous Interface. Physics of Fluids, 17(5), 057102. https://doi.org/10.1063/1.1894796
	Gupta, A. K., & Gupta. (2007). Industrial Automation and Robotics. Firewall Media.
	Mishra, M., & Rao, A. R. (2008). Peristaltic Flow of a Two-Layer System in a Poroflexible Tube. Journal of Porous Media, 11(1), 51–71. https://doi.org/10.1615/JPorMedia.v11.i1.40
	Pozrikidis, C. (2005). Axisymmetric Motion of a File of Red Blood Cells Through Capillaries. Physics of Fluids, 17(3), 031503-031503–031514. https://doi.org/doi:10.1063/1.1830484
	Shapiro, A. H., Jaffrin, M. Y., & Weinberg, S. L. (1969). Peristaltic Pumping with Long Wavelengths at Low Reynolds Number. Journal of Fluid Mechanics, 37(04), 799–825. https://doi.org/10.1017/S0022112069000899
	Shit, G. C., Roy, M., & Ng, E. Y. K. (2010). Effect of Induced Magnetic Field on Peristaltic Flow of a Micropolar Fluid in an Asymmetric Channel, 1007.0923. https://doi.org/10.1002/cnm.1397
	Wei, H. H., Waters, S. L., Liu, S. Q., & Grotberg, J. B. (2003). Flow in a Wavy-Walled Channel Lined with a Poroelastic Layer. Journal of Fluid Mechanics, 492, 23–45. https://doi.org/10.1017/S0022112003005378


