
 

 
Original Article 
ISSN (Online): 2454-1907 

                                            
 International Journal of Engineering Technologies and Management Research 

February 2024 11(2), 1–18 

 

How to cite this article (APA): Sadeghi, K. H., Razminia, A., and Simorgh, A. (2024). Control and Identification of Controlled Auto-
Regressive Moving Average (Carma) Form of an Introduced Single-Input Single-Output Tumor Model. International Journal of 
Engineering Technologies and Management Research, 11(2), 1-18. doi: 10.29121/ijetmr.v11.i2.2024.1403       

1 

 

CONTROL AND IDENTIFICATION OF CONTROLLED AUTO-REGRESSIVE MOVING 
AVERAGE (CARMA) FORM OF AN INTRODUCED SINGLE-INPUT SINGLE-OUTPUT 
TUMOR MODEL 
 

Kiavash Hossein Sadeghi 1 , Abolhassan Razminia 2 , Abolfazl Simorgh 3  
 
1 Department of Electrical Engineering, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University, 
Bushehr 75169, Iran  
2 Department of Electrical Engineering, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University, 
Bushehr 75169, Iran 
3 Department of Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain  
 

  

ABSTRACT 
The article investigates the parameter estimation for controlled auto-regressive moving 
average models with gradient based iterative approach and two-stage gradient based 
iterative approach. Since deriving a new model for tumor model is substantial, 
introduced system identification algorithms are used in order to estimate parameters of 
a specific nonlinear tumor model. Besides, in order to estimate tumor model a collection 
of output and input data is taken from the nonlinear system. Apart from that, 
effectiveness of the identification algorithms such as convergence rate and estimation 
error is depicted through various tables and figures. Finally, it is shown that the two stage 
approach has higher identification efficacy. 
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1. INTRODUCTION 
The iterative and recursive algorithms could be used to solve matrix equations 

Wang (2007), Ding (2005), Xie (2010), parameter estimation problems Li (2018),  
Li (2018), Liu (2010) and filtering issues Ma (2020). In parameter estimation 
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approaches which are recursive, the estimation of parameters can to be calculated 
in an online framework Du (2017), Wei (2017). On the other hand, the primary 
notion of the hierarchical algorithms is to update estimation of the parameters by 
applying a set of data Ding (2018), Ding (2019), Sadeghi (2023). The hierarchical 
parameter estimation approaches make adequate use of all output and input Data 
Li (2020), Wang (2020), and could enhance the accuracy of estimation of 
parameters Li (2020), Ding (2020) and convergence rate of parameters Li (2021), 
Chen (2020). 

 Two-stage algorithms have an enormous usage in the realm of parameter 
identification Sadeghi (2023), Sadeghi (2023) developed a two-stage step-wise 
system identification approach for a class of nonlinear dynamic systems Li et al. 
(2006). In Raja (2015), two-stage least mean square adaptive methods relying on 
process of fractional signal were fostered regarding CARMA systems. A two-stage 
neural network algorithms related to ARMA model estimation by the use of a simple 
mean called extended sample autocorrelation function is presented Lee (1994). In 
Bin (2012), a two-stage method is introduced regarding the system identification of 
an ARMAX model which identifies ARX and MA part separately by bias-eliminated 
least squares method and another basic method respectively. Also in Ding (2020), a 
new two-stage algorithm for estimating parameter of system is brought up but in 
this article as a novelty, a CARMA system is discussed. 

Having a suitable model for tumor system has become an integral issue since 
the death rate of cancer has become considerable. Accessing a suitable polynomial 
model for tumor can make the designing of a controller for system much easier. In 
Pillis (2020), a four population model is presented which contains  tumor cells, host 
cells, drug interaction, immune cells  and a controller based on optimization, which 
is used to satisfy the specific desire. In Sweilam & AL-Mekhlafi (2018), an updated 
nonlinear mathematical format of a general tumor beneath immune suppression is 
discussed.  The brought up model in this paper is ruled by a fractional differential 
equations system. Lobato (2016) presented another model for tumor and in their 
works they aim to reach a protocol of optimization for injection of drug to sick 
individuals having cancer, by the making both of the cells having cancer and the drug 
concentration which has been prescribed minimum Lobato (2016). Tumor model 
presented in this last research is the basis of our study throughout the rest of the 
paper.  

Controlling a CARMA or ARMAX model system has been the subject of a few 
papers and not much work has been done in this field. For instance, In Chen & Guo 
(1987), an optimal adaptive control for ARMAX systems using a quadratic loss 
function is introduced. In Li (2021), abrupt faults in ARMAX models have been taken 
into consideration and reliable control problem has been studied. Multivariable 
system control is discussed in Osorio-Arteaga (2020) where a robust adaptive 
control is applied to ARMA and ARMAX structures of an electric arc model. 
Furthermore, linear neural networks was set as a study tool for adpative control of 
CARMA systems Watanabe (1992).  

In the following section, a nuance characteristic of the system configuration 
regarding the CARMA configuration is brought up. Also, section section 3 includes 
the mathematics of two novel GI algorithm. Section 4 describes a specific tumor 
model. In section 5, all the necessary simulations for showing the effectiveness of 
new algorithms are illustrated by identifying a tumor model. Eventually, in the last 
section, all the outcomes were derived.  
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2. SYSTEM MODEL: CARMA SYSTEMS 

Take the introduced below CARMA system into consideration: 
 

                    𝐴𝐴(𝑞𝑞)y(t) = B(q)u(t) + C(q)ν(t)                                                                         (1) 
 
Here u(t) is the succession of input of the system, y(t) is the  succession of 

output of the system and ν(t) is a  succession of white noise with zero mean and 
variance σ2. Also A(q), B(q) and c(q) are multinomial in the monad backward 
variation agent [i.e. 𝑞𝑞−1u(t)  =  u(t  −  1)]. For simplicity in the rest of the paper, we 
have the following notations: A =: X describes A is described as X; The indication I 
(𝐼𝐼𝑛𝑛) is an identity matrix with suitable dimensions (𝑛𝑛 ×  𝑛𝑛); $1_{n}$ indicates a 
vector of n-dimensional column  which all components are 1. The superscript T 
indicates the transpose of a matrix; the  matrix norm is described by |𝑋𝑋|2 = 𝑡𝑡𝑡𝑡(𝑋𝑋𝑋𝑋𝑇𝑇). 

 
 
Now look at the CARMA system shown in Figure \ref{fig.1}. We define A(q), 

B(q) and C(q) as polynomials of known orders (𝑛𝑛𝑎𝑎,𝑛𝑛𝑏𝑏 ,𝑛𝑛𝑐𝑐) as 
follows: 

𝐴𝐴(𝑞𝑞) ≔ 1 + 𝑎𝑎1𝑞𝑞−1 + 𝑎𝑎2𝑞𝑞−2 + ⋯+ 𝑎𝑎𝑛𝑛𝑎𝑎𝑞𝑞
𝑛𝑛𝑎𝑎 , 

𝐵𝐵(𝑞𝑞) ≔ 𝑏𝑏1𝑞𝑞−1 + 𝑏𝑏2𝑞𝑞−2 + ⋯+ 𝑏𝑏𝑛𝑛𝑏𝑏𝑞𝑞
𝑛𝑛𝑏𝑏 , 

𝐶𝐶(𝑞𝑞) ≔ 1 + 𝑐𝑐1𝑞𝑞−1 + 𝑐𝑐2𝑞𝑞−2 + ⋯+ 𝑐𝑐𝑛𝑛𝑐𝑐𝑞𝑞
𝑛𝑛𝑐𝑐 . 

 
In a generic way, it is presumed that y(t) = 0, u(t) = 0 and  ν(t).= 0 for t ≪ 0. 

Take 𝑛𝑛 ≔ 𝑛𝑛𝑎𝑎 + 𝑛𝑛𝑏𝑏 + 𝑛𝑛𝑐𝑐 , Consider the system parameter vectors: 
 

Θ ≔   �θϑ� ∈ 𝑅𝑅
𝑛𝑛, 

θ ≔ �𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎𝑛𝑛𝑎𝑎 , 𝑏𝑏1,𝑏𝑏2,⋯ , 𝑏𝑏𝑛𝑛𝑏𝑏�
𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛𝑎𝑎+𝑛𝑛𝑏𝑏 , 

ϑ ≔ �𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑛𝑛𝑐𝑐�
𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛𝑐𝑐 , 

 
and the corresponding information vectors: 
 Type equation here. 

φ(t) ≔   �𝜙𝜙
(𝑡𝑡)

𝜓𝜓(𝑡𝑡)� ∈ 𝑅𝑅
𝑛𝑛, 

 ϕ(t) ≔ [−y(t − 1),−y(t − 2),⋯ ,−y(t − na), u(t − 1), u(t − 2),⋯ , u(t − nb)]𝑇𝑇
∈ 𝑅𝑅𝑛𝑛𝑎𝑎+𝑛𝑛𝑏𝑏 , 
𝜓𝜓(𝑡𝑡) ≔ [ν(𝑡𝑡 − 1), ν(𝑡𝑡 − 2),⋯ , ν(𝑡𝑡 − 𝑛𝑛𝑐𝑐)]𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛𝑐𝑐 . 
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Based on the above definitions and equation (\ref{eq.1}), we attain the the 
below parameter estimation configuration: 

 
 𝑦𝑦(𝑡𝑡) = [1 − 𝐴𝐴(𝑞𝑞)]𝑦𝑦(𝑡𝑡) + 𝐵𝐵(𝑞𝑞)𝑢𝑢(𝑡𝑡) + 𝐶𝐶(𝑞𝑞)ν(𝑡𝑡)=[1 − 1 − 𝑎𝑎1𝑞𝑞−1 − 𝑎𝑎2𝑞𝑞−2 − ⋯−

𝑎𝑎𝑛𝑛𝑎𝑎𝑞𝑞
𝑛𝑛𝑎𝑎]𝑦𝑦(𝑡𝑡) + [𝑏𝑏1𝑞𝑞−1 + 𝑏𝑏2𝑞𝑞−2 + ⋯+ 𝑏𝑏𝑛𝑛𝑏𝑏𝑞𝑞

𝑛𝑛𝑏𝑏]𝑢𝑢(𝑡𝑡) + 1 + [𝑐𝑐1𝑞𝑞−1 + 𝑐𝑐2𝑞𝑞−2 + ⋯+
𝑐𝑐𝑛𝑛𝑐𝑐𝑞𝑞

𝑛𝑛𝑐𝑐]𝜈𝜈(𝑡𝑡) =  [−y(t − 1) − y(t − 2)−. . .−y(t − 𝑛𝑛𝑎𝑎) + u(t − 1) + u(t −
2)+. . . +u(t − 𝑛𝑛𝑏𝑏)]𝜃𝜃 + [𝜈𝜈(𝑡𝑡 − 1) + 𝜈𝜈(𝑡𝑡 − 2) + 𝜈𝜈(𝑡𝑡 − 𝑛𝑛𝑐𝑐)]𝜗𝜗, 

 
y(t)= 𝜙𝜙(𝑡𝑡)𝜃𝜃+ 𝜓𝜓(𝑡𝑡)𝜗𝜗+ 𝜈𝜈(𝑡𝑡),                                                                                                       (2) 
 
y(t)= 𝜑𝜑(𝑡𝑡)Θ+ 𝜈𝜈(𝑡𝑡),                                                                                                                      (3) 
 
3. THEORY OF IDENTIFICATION AND CONTROL ALGORITHMS 

3.1. GRADIENT BASED ITERATIVE ALGORITHMS(GI) 

We consider k=1,2,3,… as an hierarchical variable Θ�𝑘𝑘 ≔   �θ
�𝑘𝑘
ϑ�𝑘𝑘
� ∈ 𝑅𝑅𝑛𝑛, and Θ ≔

  �𝜃𝜃𝜗𝜗� as the hierarchical  identification of and while k iteration has established. 
Beyond that λ𝑚𝑚𝑚𝑚𝑚𝑚[𝑋𝑋] is the biggest eigenvalue of the matrix of symmetric format X. 

Now we take an array of data with length L which works with the model 
introduced in. Here, we consider the vector of stacked output data Y(L) and matrix 
of the stacked data  Φ(𝐿𝐿) like: 

 

Y(L):=�

𝑦𝑦(1)
𝑦𝑦(2)

.
𝑦𝑦(𝐿𝐿)

� ∈ 𝑅𝑅𝑛𝑛, 

 

Φ:=�

ϕ(1)
𝜙𝜙(2)

.
𝜙𝜙(𝐿𝐿)

� ∈ 𝑅𝑅𝐿𝐿×𝑛𝑛, 

 
Now we define the static criterion function as follows: 
 

𝐽𝐽1(Θ) =
1
2
�[𝑦𝑦(𝑡𝑡) − φ𝑇𝑇Θ]2
𝐿𝐿

𝑡𝑡=1

, 

 
which can be equally described as: 
 

𝐽𝐽1(Θ) =
1
2

|𝑦𝑦(𝐿𝐿) −Φ(𝐿𝐿)Θ|2. 

By taking advantage of negative gradient probe, calculating the partial 
derivative of 𝐽𝐽1(Θ) regarding Θ, we attain this iterative relation: 
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     Θ�𝑘𝑘 = Θ�𝑘𝑘−1 − μ𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐽𝐽1�Θ�𝑘𝑘−1�   
 =Θ�𝑘𝑘 + μΦ𝑇𝑇(𝐿𝐿)[𝑌𝑌(𝐿𝐿) −Φ(𝐿𝐿)]Θ�𝑘𝑘−1 
 = [𝐼𝐼𝑛𝑛 − μΦ𝑇𝑇(𝐿𝐿)Φ(𝐿𝐿)]Θ𝑘𝑘−1� + μΦ𝑇𝑇(𝐿𝐿)𝑌𝑌(𝐿𝐿), 
 
Here, μ  >  0 is a convergence factor or an iterative step-size. To make sure 

about convergence of Θ�𝑘𝑘 , all the eigenvalues of 𝐼𝐼𝑛𝑛 − μΦ𝑇𝑇(𝐿𝐿)Φ(𝐿𝐿) should be in the 
monad circle, so −𝐼𝐼𝑛𝑛 ≤ 𝐼𝐼𝑛𝑛 − μΦ𝑇𝑇(𝐿𝐿)Φ(𝐿𝐿) ≤ 𝐼𝐼𝑛𝑛 𝑜𝑜𝑜𝑜 0 ≤ 𝐼𝐼𝑛𝑛 − μΦ𝑇𝑇(𝐿𝐿)Φ(𝐿𝐿) ≤ 2𝐼𝐼𝑛𝑛 
therefore as suitable conservative form of μ we have: 

 

μ ≤  
2

λmax[ΦT(L)Φ(L)] = 2λ𝑚𝑚𝑚𝑚𝑚𝑚−1 [Φ𝑇𝑇(𝐿𝐿)Φ(𝐿𝐿)]. 

 
As to eschew calculating the intricate eigenvalues of a matrix which is square 

and to decrease evaluation expense, the trace of matrix is taken advantage of and 
capitalized on a different manner for picking up the convergence rate: 

 

μ ≤
2

|Φ(𝐿𝐿)|2
= 2|Φ(𝐿𝐿)|−2. 

 
Now it is possible to attain the gradient based iterative method for CARMA 

system presented in equation (1) with the following set of equations: 
 
Θ�𝑘𝑘 = Θ�𝑘𝑘−1 + μΦ𝑇𝑇(𝐿𝐿)�𝑌𝑌(𝐿𝐿) −Φ(𝐿𝐿)Θ�𝑘𝑘−1�, 𝑘𝑘 = 1,2,3, . ..                                               (4) 
 
μ = 2|Φ(𝐿𝐿)|−2,                                                                                                                             (5) 
 
𝑌𝑌(𝐿𝐿) = [𝑦𝑦(1),𝑦𝑦(2), … ,𝑦𝑦(𝐿𝐿)]𝑇𝑇                                                                                                    (6) 
 
Φ(𝐿𝐿) = [φ(1),φ(2),⋯ ,φ(𝐿𝐿)]𝑇𝑇                                                                                                 (7)   
 

 𝜑𝜑(𝑡𝑡) ≔   �𝜙𝜙
(𝑡𝑡)

𝜓𝜓(𝑡𝑡)� ,                                t = 1,2, . . . , L                                                               (8) 

 
ϕ(𝑡𝑡) = [−𝑦𝑦(𝑡𝑡 − 1),−𝑦𝑦(𝑡𝑡 − 2),⋯ ,−𝑦𝑦(𝑡𝑡 − 𝑛𝑛𝑎𝑎),𝑢𝑢(𝑡𝑡 − 1),𝑢𝑢(𝑡𝑡 − 2),⋯ ,𝑢𝑢(𝑡𝑡 −

𝑛𝑛𝑏𝑏)]𝑇𝑇 ,                                                                                                                                                            (9) 
 
ψ(𝑡𝑡) = [ν(𝑡𝑡 − 1), ν(𝑡𝑡 − 2),⋯ , ν(𝑡𝑡 − 𝑛𝑛𝑐𝑐)]𝑇𝑇 .                                                                          (10) 
 
The steps of calculating Θ�𝑘𝑘from equation (4)-(10) summarized as below: 

1) Regarding 𝑡𝑡 ≤  0 set every variable to zero. Assume k = 1, take the data length 
L (L≫ 𝑛𝑛) and take the primary amounts, Θ�𝑘𝑘 = 1𝑛𝑛

𝑝𝑝0
,𝑝𝑝0 = 106 and the system 

identification precision ε.  
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2) Gather all the input u(t) and output y(t) for t=1,2,…,L. 
3) Attain the vectors of information ϕ by equation (9), ψ by equation (10) and 

ϑ by equation (8).  
4) Form the vector of stacked output Y(L) regarding equation (6) and the matrix 

of stacked information Φ(𝐿𝐿) regarding equation (7), also pick up a large μ 
based on equation (5). 

5) Upgrade the parameter estimation vector $\hat{\Theta}{k}$ by equation 
(\ref{eq.4}). 

6) Contrast Θ�𝑘𝑘 with Θ�𝑘𝑘−1. If ||Θ�𝑘𝑘 − Θ�𝑘𝑘−1|| < 𝜀𝜀extend k in unit order and start 
from step 5. In all other respects, attain iteration k and the system 
identification vector Θ�𝑘𝑘 . 

 
3.2. TWO-STAGE GRADIENT BASED ITERATIVE ALGORITHMS 

(2S-GI) 
Consider the CARMA model described in equation (\ref{eq.2}).  
First, we define these two imaginary output variables: 
 

𝑦𝑦1(𝑡𝑡) ≔ 𝑦𝑦(𝑡𝑡) − ψ𝑇𝑇(𝑡𝑡)ϑ ∈ 𝑅𝑅 
𝑦𝑦2(𝑡𝑡) ≔ 𝑦𝑦(𝑡𝑡) − ϕ𝑇𝑇(𝑡𝑡)θ ∈ 𝑅𝑅 

 
Afterwards by these definitions we have: 
 
𝑦𝑦1(𝑡𝑡) = ϕ𝑇𝑇(𝑡𝑡)θ + ν                                                                                                                  (11) 
 
𝑦𝑦2(𝑡𝑡) = ψ𝑇𝑇(𝑡𝑡)ϑ + 𝜈𝜈                                                                                                                 (12) 
 
Take $L$ as data length. According to equation (11) and (12), we define these 

two static criterion functions: 
 

𝐽𝐽1(θ) = 1
2
∑ [𝑦𝑦1(𝑡𝑡) − ϕ𝑇𝑇(𝑡𝑡)θ]2𝐿𝐿
𝑡𝑡=1 ,                                                                                                     (13) 

 

                                 𝐽𝐽2(ϑ) =
1
2
�[𝑦𝑦2(𝑡𝑡) − ψ𝑇𝑇(𝑡𝑡)ϑ]2
𝐿𝐿

𝑡𝑡=1

.                                                        (14) 

 
Consider the vector of stacked output Y(L), vectors of the stacked imaginary 

outputs  𝑌𝑌1(𝐿𝐿) and 𝑌𝑌2(𝐿𝐿), and the matrices of stacked information ϕ(𝐿𝐿) and ψ(𝐿𝐿) are 
as follows: 

𝑌𝑌(𝐿𝐿) ≔ [𝑦𝑦(1),𝑦𝑦(2),⋯ , 𝑦𝑦(𝐿𝐿)]𝑇𝑇 ∈ 𝑅𝑅𝐿𝐿 
 𝑌𝑌1(𝐿𝐿) ≔ [𝑦𝑦1(1),𝑦𝑦1(2),⋯ ,𝑦𝑦1(𝐿𝐿)]𝑇𝑇 = 𝑌𝑌(𝐿𝐿) − ψ(𝐿𝐿)ϑ ∈ 𝑅𝑅𝐿𝐿  
 𝑌𝑌2(𝐿𝐿) ≔ [𝑦𝑦2(1),𝑦𝑦2(2),⋯ , 𝑦𝑦2(𝐿𝐿)]𝑇𝑇 = 𝑌𝑌(𝐿𝐿) − ϕ(𝐿𝐿)θ ∈ 𝑅𝑅𝐿𝐿  

Φ(𝐿𝐿) ≔ [ϕ(1),ϕ(2),⋯ ,ϕ(𝐿𝐿)]𝑇𝑇 ∈ 𝑅𝑅𝐿𝐿×(𝑛𝑛𝑎𝑎+𝑛𝑛𝑏𝑏) 
Ψ(𝐿𝐿) ≔ [ψ(1),ψ(2),⋯ ,ψ(𝐿𝐿)]𝑇𝑇 ∈ 𝑅𝑅𝐿𝐿×𝑛𝑛𝑐𝑐  
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Equations (13) and (14) can be equivalently written as: 
 

𝐽𝐽1(θ) =
1
2

|𝑌𝑌1(𝐿𝐿) −Φ(𝐿𝐿)θ|2 

 

𝐽𝐽2(ϑ) =
1
2

|𝑌𝑌2(𝐿𝐿) −Ψ(𝐿𝐿)ϑ|2 

By taking advantage of the search of negative gradient to make the criterion 
functions above minimum, we have: 

 
 θ�𝑘𝑘 = 𝜃𝜃�𝑘𝑘−1 − μ1𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐽𝐽1�𝜃𝜃�𝑘𝑘−1� 

= 𝜃𝜃�𝑘𝑘−1 + μ1Φ𝑇𝑇(𝐿𝐿)�𝑌𝑌1(𝐿𝐿) −Φ(𝐿𝐿)𝜃𝜃�𝑘𝑘−1� 
  = 𝜃𝜃�𝑘𝑘−1 + μ1Φ𝑇𝑇(𝐿𝐿)�𝑌𝑌(𝐿𝐿) −Ψ(𝐿𝐿)ϑ − Φ(𝐿𝐿)𝜃𝜃�𝑘𝑘−1� 
  =�𝐼𝐼𝑛𝑛𝑎𝑎+𝑛𝑛𝑏𝑏 − μ1Φ𝑇𝑇(𝐿𝐿)Φ(𝐿𝐿)�θ𝑘𝑘−1� + μ1Φ𝑇𝑇(𝐿𝐿)[𝑌𝑌(𝐿𝐿) −Ψ(𝐿𝐿)ϑ] 
     
  𝜗̂𝜗𝑘𝑘 = 𝜗̂𝜗𝑘𝑘−1 − μ2𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  
  = +μ2Ψ𝑇𝑇(𝐿𝐿)�𝑌𝑌2(𝐿𝐿) −Ψ(𝐿𝐿)𝜗̂𝜗𝑘𝑘−1� 
  = 𝜗̂𝜗𝑘𝑘−1 + μ2 

= Ψ𝑇𝑇(𝐿𝐿)�𝑌𝑌(𝐿𝐿) −Φ(𝐿𝐿)θ − Ψ(𝐿𝐿)𝜗̂𝜗𝑘𝑘−1� 
  = �𝐼𝐼𝑛𝑛𝑐𝑐 − μ2Ψ𝑇𝑇(𝐿𝐿)Ψ(𝐿𝐿)�𝜗̂𝜗𝑘𝑘−1 + μ2Ψ𝑇𝑇(𝐿𝐿)[𝑌𝑌(𝐿𝐿) −Φ(𝐿𝐿)θ] 
     
To make sure about convergence of 𝜃𝜃�𝑘𝑘 and 𝜗̂𝜗𝑘𝑘  all the eigenvalues of 

�𝐼𝐼𝑛𝑛𝑎𝑎+𝑛𝑛𝑏𝑏 − μ1ϕ𝑇𝑇(𝐿𝐿)ϕ(𝐿𝐿)� and �𝐼𝐼𝑛𝑛𝑐𝑐 − μ2ψ𝑇𝑇(𝐿𝐿)ψ(𝐿𝐿)�, should be in the unit circle, so we 
have: 

 
  −𝐼𝐼𝑛𝑛 ≤ 𝐼𝐼𝑛𝑛𝑎𝑎+𝑛𝑛𝑏𝑏 − μ1Φ𝑇𝑇(𝐿𝐿)Φ(𝐿𝐿) ≤ 𝐼𝐼𝑛𝑛 
 
  −𝐼𝐼𝑛𝑛 ≤ 𝐼𝐼𝑛𝑛𝑐𝑐 − μ2Ψ𝑇𝑇(𝐿𝐿)Ψ(𝐿𝐿) ≤ 𝐼𝐼𝑛𝑛 
 
 Therefore, similar to GI algorithm as a conservative choice, we have the 

following relation for μ1 and μ2: 
 
 μ1 = 2||Φ(𝐿𝐿)||−2 
 
 μ2 = 2||Ψ(𝐿𝐿)||−2 
 
 In brief, we have the following set of equations for 2S-GI algorithm: 
 
 θ�𝑘𝑘 = 𝜃𝜃�𝑘𝑘−1 + μ1Φ𝑇𝑇(𝐿𝐿)�𝑌𝑌(𝐿𝐿) −Φ(𝐿𝐿)𝜃𝜃�𝑘𝑘−1 − Ψ(𝐿𝐿)ϑ𝑘𝑘−1�,                                            (15)  
 
 μ1 = 2||Φ(𝐿𝐿)||−2                                                                                                                        (16) 
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 𝜗̂𝜗𝑘𝑘 = 𝜗̂𝜗𝑘𝑘−1 + μ2Ψ𝑇𝑇(𝐿𝐿)�𝑌𝑌(𝐿𝐿) −Φ(𝐿𝐿)𝜃𝜃�𝑘𝑘−1 −

Ψ(𝐿𝐿)ϑ𝑘𝑘−1�,                                                                                                                                   (17) 
 
                  μ2 = 2||Ψ(𝐿𝐿)||−2                                                                                            (18)   
 
   𝑌𝑌(𝐿𝐿) ≔ [𝑦𝑦(1),𝑦𝑦(2),⋯ ,𝑦𝑦(𝐿𝐿)]𝑇𝑇 ∈

 𝑅𝑅𝐿𝐿                                                                                                                                                  (19)  
 
Φ(𝐿𝐿) ≔ [ϕ𝑇𝑇(1),ϕ𝑇𝑇(2),⋯ ,ϕ𝑇𝑇(𝐿𝐿)]𝑇𝑇 ,                                                                               (20) 
 

                               Ψ(𝐿𝐿) ≔ [ψ𝑇𝑇(1),ψ𝑇𝑇(2),⋯ ,ψ𝑇𝑇(𝐿𝐿)]𝑇𝑇 ,                                                    (21) 
 
ϕ(𝑡𝑡) = [−𝑦𝑦(𝑡𝑡 − 1),−𝑦𝑦(𝑡𝑡 − 2),⋯ ,−𝑦𝑦(𝑡𝑡 − 𝑛𝑛𝑎𝑎),𝑢𝑢(𝑡𝑡 − 1),𝑢𝑢(𝑡𝑡 − 2),⋯ ,𝑢𝑢(𝑡𝑡 −

𝑛𝑛𝑏𝑏)]𝑇𝑇 ,                                                                                                                                                    (22) 
 

                            ψ(𝑡𝑡) = [ν(𝑡𝑡 − 1), ν(𝑡𝑡 − 2),⋯ , ν(𝑡𝑡 − 𝑛𝑛𝑐𝑐)]𝑇𝑇 ,                                          (23) 
 

θ� = �𝑎𝑎�𝑘𝑘−1,𝑎𝑎�𝑘𝑘−2, . . . ,𝑎𝑎�𝑘𝑘−𝑛𝑛𝑎𝑎 , 𝑏𝑏�𝑘𝑘−1, , 𝑏𝑏�𝑘𝑘−2, . . . , 𝑏𝑏�𝑘𝑘−𝑛𝑛𝑏𝑏�
𝑇𝑇 ,                                                   (24) 

 

𝜗̂𝜗 = �𝑐̂𝑐𝑘𝑘−1, 𝑐̂𝑐𝑘𝑘−2, . . . , 𝑐̂𝑐𝑘𝑘−𝑛𝑛𝑐𝑐�
𝑇𝑇 ,                                                                                                     (25) 

 
The steps of attaining θ�𝑘𝑘 and 𝜗̂𝜗𝑘𝑘 included in the 2S-GI approach from equation 

(15)–(25) are brought up as follows: 
1) Regarding 𝑡𝑡 ≤ 0, put every parameter to 0. Imagine k=1 take the length of 

data  as L (𝐿𝐿 ≫ 𝑛𝑛_{𝑎𝑎} + 𝑛𝑛_{𝑏𝑏}) and set the initial values as: θ�0 =
1𝑛𝑛𝑛𝑛+𝑛𝑛𝑏𝑏
𝑝𝑝0

, 𝜗̂𝜗0 =
1𝑛𝑛𝑐𝑐
𝑝𝑝0

 and the parameter estimation accuracy ε. 

2) Gather all the input u(t) and output y(t) for t=1,2,…,L. Attain the information 
vectors ϕ(22) by equation (22) and ψ(t) by equation (23). 

3) Build the vector of stacked output Y(L) by (19) and the matrices of stacked 
information  Φ(𝐿𝐿) and Ψ(𝐿𝐿) by (20) and (21), calculate the convergence 
factor μ1 and μ2 regarding (16) and (18). 

4) Update the vectors of parameter approximation θ�𝑘𝑘  𝑎𝑎𝑎𝑎𝑎𝑎  𝜗̂𝜗𝑘𝑘  by 
(15) and (17). 

5) Compare θ�𝑘𝑘 with θ�𝑘𝑘−1and 𝜗̂𝜗𝑘𝑘  with 𝜗̂𝜗𝑘𝑘−1 :If ||θ�𝑘𝑘 − θ�𝑘𝑘−1||2+||𝜗̂𝜗𝑘𝑘  − 𝜗̂𝜗𝑘𝑘−1 ||2> 
ε, extend k by $1$ and start from step 4. In all other respects attain iteration 
k and the vectors of estimation of parameters θ�𝑘𝑘 and 𝜗̂𝜗𝑘𝑘 .  

 

4. CONTROL THEORY 
In this part of the paper, theory of a ziegler nichols PID controller for third order 

processes introduced in (Bobal, 2006) is brought up. The control law which we took 
advantage of is: 
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𝑢𝑢𝑘𝑘 = 𝐾𝐾𝑃𝑃 �𝑒𝑒𝑘𝑘 − 𝑒𝑒𝑘𝑘−1 + 𝑇𝑇0(𝑒𝑒𝑘𝑘−𝑒𝑒𝑘𝑘−1)
2𝑇𝑇𝐼𝐼

+ 𝑇𝑇𝐷𝐷
𝑇𝑇0

(𝑒𝑒𝑘𝑘 − 2𝑒𝑒𝑘𝑘−1 + 𝑒𝑒𝑘𝑘−2) + 𝑢𝑢𝑘𝑘−1�.                  (26) 

 
                   𝑒𝑒𝑘𝑘 = 𝑤𝑤𝑘𝑘 − 𝑦𝑦𝑘𝑘                                                                                                            (27) 

 
Here 𝑒𝑒𝑘𝑘 is the controller error. The feedback form of control law is: 
 
𝑢𝑢_{𝑘𝑘} = 𝑞𝑞_{0}𝑒𝑒_{𝑘𝑘} + 𝑞𝑞_{1}𝑒𝑒_{𝑘𝑘 − 1} + 𝑞𝑞_{2}𝑒𝑒_{𝑘𝑘 − 2} + 𝑢𝑢_{𝑘𝑘 − 1}                   (28) 
 
Where 𝑞𝑞0, 𝑞𝑞1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞2 respectively are: 

𝑞𝑞0 = 𝐾𝐾𝑃𝑃 �1 +
𝑇𝑇0
2𝑇𝑇𝐼𝐼

+
𝑇𝑇𝐷𝐷
𝑇𝑇0
� 

𝑞𝑞1 = −𝐾𝐾𝑃𝑃 �1 −
𝑇𝑇0
2𝑇𝑇𝑖𝑖

+
2𝑇𝑇𝐷𝐷
𝑇𝑇0

� 

𝑞𝑞2 = 𝐾𝐾𝑃𝑃
𝑇𝑇𝐷𝐷
𝑇𝑇0

 

And we have: 
𝐾𝐾𝑃𝑃 = 0.6𝐾𝐾𝑃𝑃𝑃𝑃 ,             𝑇𝑇𝐼𝐼 = 0.5𝑇𝑇𝑢𝑢,            𝑇𝑇𝐷𝐷 = 0.125𝑇𝑇𝑢𝑢. 
And 𝑇𝑇𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾𝑝𝑝𝑝𝑝 are ultimate period and ultimate gain respectively. 
    
5. TUMOR MODEL 

I indicate the immune cells number at time t, T denotes the tumor cells number 
at time t, N describes the normal (host) cells number at time t, and u is the plan of 
control.\begin{figure}[h] \centering \includegraphics[width=.5\linewidth]{T-I-
N.eps} \caption{Random tumor and immune cells interactions.} 

  

 
 
 𝑁̇𝑁(𝑡𝑡) = 𝑟𝑟2𝑁𝑁(𝑡𝑡)�1 − 𝑏𝑏2𝑁𝑁(𝑡𝑡)� − 𝑐𝑐4𝑇𝑇(𝑡𝑡)𝑁𝑁(𝑡𝑡) −

𝑎𝑎3𝑢𝑢(𝑡𝑡)                                                               𝑁𝑁(0) = 𝑁𝑁𝑜𝑜 ,  
 𝑇̇𝑇(𝑡𝑡) = 𝑟𝑟1𝑇𝑇(𝑡𝑡)�1 − 𝑏𝑏1𝑇𝑇(𝑡𝑡)� − 𝑐𝑐2𝐼𝐼(𝑡𝑡)𝑇𝑇(𝑡𝑡) − 𝑐𝑐3𝑇𝑇(𝑡𝑡)𝑁𝑁(𝑡𝑡) −

𝑎𝑎2𝑢𝑢(𝑡𝑡)                                                                𝑇𝑇(0) = 𝑇𝑇𝑜𝑜, 

𝐼𝐼(̇𝑡𝑡) = 𝑠𝑠 +
ρ𝐼𝐼(𝑡𝑡)𝑇𝑇(𝑡𝑡)
α + 𝑇𝑇(𝑡𝑡)

− 𝑐𝑐1𝐼𝐼(𝑡𝑡)𝑇𝑇(𝑡𝑡) − 𝑑𝑑1𝐼𝐼(𝑡𝑡) − 𝑎𝑎1𝑢𝑢(𝑡𝑡)𝐼𝐼(0) 
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                                                              𝐼𝐼(0) = 𝐼𝐼𝑜𝑜 . 
Values of known parameters in above equations are listed below Lobato (2016)  

Parameter Values Parameter Values 

𝑎𝑎1 0.2 𝑎𝑎2 0.3 
𝑎𝑎3 0.1 𝑏𝑏1 1 
𝑏𝑏2 1 𝛼𝛼 0.5 
𝑐𝑐1 1 𝑐𝑐2 0.5 
𝑐𝑐3 1 𝑐𝑐4 1 
𝑑𝑑1 0.2 ρ 0.01 
𝑟𝑟1 1.5 𝑟𝑟2 1 
S 0.33   

 
Therefore, we yield: \begin{equation*} \begin{split} 
 𝑁̇𝑁(𝑡𝑡) = 𝑁𝑁(𝑡𝑡) −𝑁𝑁2(𝑡𝑡) − 𝑇𝑇(𝑡𝑡)𝑁𝑁(𝑡𝑡) − 0.1𝑢𝑢(𝑡𝑡), 
 𝑑𝑑(𝑡𝑡) = 1.5𝑇𝑇(𝑡𝑡) − 1.5𝑇𝑇2(𝑡𝑡) − 0.5𝐼𝐼(𝑡𝑡)𝑇𝑇(𝑡𝑡) − 𝑇𝑇(𝑡𝑡)𝑁𝑁(𝑡𝑡) − 0.3𝑢𝑢(𝑡𝑡), 

 𝐼𝐼(̇𝑡𝑡) = 0.33 + 0.01𝐼𝐼(𝑡𝑡)𝑇𝑇(𝑡𝑡)
0.3+𝑇𝑇(𝑡𝑡) − 𝐼𝐼(𝑡𝑡)𝑇𝑇(𝑡𝑡) − 0.2𝐼𝐼(𝑡𝑡) − 0.2𝑢𝑢(𝑡𝑡). 

 
6. SIMULATIONS 

6.1. ESTIMATION OF T(T)  
In this paper, we aim to identify T(t) as the quantity of tumor cells at time t and 

I(t) as the quantity of immune cells at time t, by presenting novel parameter 
estimation method. In simulations assume 𝑛𝑛𝑎𝑎 = 2, 𝑛𝑛𝑏𝑏 = 2and 𝑛𝑛𝑐𝑐 = 2. In 
simulations,𝑁𝑁𝑜𝑜 = 2, 𝑇𝑇0=1 and 𝐼𝐼0=1. \subsection{Estimation of T(t)} 

The CARMA model of T(t) as the output and u(t) as the input is:  
 

𝐴𝐴(𝑞𝑞) = 1 − 0.0862𝑞𝑞−1 − 0.8937𝑞𝑞−2 
𝐵𝐵(𝑞𝑞) = −1.7580𝑞𝑞−1 + 1.7580𝑞𝑞−2 
𝐶𝐶(𝑞𝑞) = 1 + 0.6264𝑞𝑞−1 − 0.3459𝑞𝑞−2 

Table 1 
Table 1 Estimation Result for 𝛔𝛔𝟐𝟐 = (𝟏𝟏.𝟎𝟎𝟎𝟎)𝟐𝟐 

Algorithms t=L        
1000 -0.1005 -0.8864 -1.7053 

GI 2000 -0.0970 -0.8816 -1.7751  
3000 -0.0974 -0.8822 -1.7473  
1000 -0.0976 -0.8835 -1.7570 

2S-GI 2000 -0.0946 -0.8836 -1.7145  
3000 -0.0921 -0.8797 -1.7161 

True value 
 

-0.0862 -0.8937 -1.7580 

 

Algorithms t=L        
1000 1.7859 -0.0460 -0.0020 

GI 2000 1.7389 0.0229 0.0426  
3000 1.7378 0.0231 0.0009 
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1000 1.7690 0.0019 -0.0030 

2S-GI 2000 1.7380 0.0281 -0.0189  
3000 1.7726 0.0455 -0.0485   

1.7570 0.6264 -0.3459 

 

Algorithms t=L 
 

 
1000 7.6604 

GI 2000 6.8844  
3000 6.4698  
1000 6.8316 

2S-GI 2000 6.2351  
3000 5.7110 

 

 
Estimation of 𝑏𝑏1and 𝑐𝑐2 for CARMA System with Variance 𝜎𝜎2 = 2.002 and Number of Data L=1000 
with GI Algorithm 

 

 
Estimation of 𝑏𝑏1  𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐2for CARMA System with Variance 𝜎𝜎2 = 2.002 and Number of Data L=1000 
with 2S-GI Algorithm 
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Estimation of 𝑐𝑐1for CARMA System with Variance 𝜎𝜎2 = 2.002 and Number of Data L=1000 

 

 
Estimation Error for CARMA System with Variance 𝜎𝜎2 = 2.002and Number of Data L=1000 

 
Table 2 

Table 2 Estimation Results for 𝝈𝝈𝟐𝟐 = (𝟐𝟐.𝟎𝟎𝟎𝟎)𝟐𝟐 

Algorithms t=L        
1000 -0.1182 0.8405 -1.6400 

GI 2000 -0.1412 -0.8478 -1.7594  
3000 -0.136 -0.8474 -1.7737  
1000 -0.1379 -0.8400 -1.6632 

2S-GI 2000 -0.1332 -0.8451 -1.6933  
3000 -0.1270 -0.8465 -1.7573 

True value 
 

-0.0862 -0.8937 -1.7580 
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Algorithms t=L        
1000 1.8659 -0.1413 -0.1693 

GI 2000 1.9069 0.0147 0.0319  
3000 1.8679 0.0142 0.0082  
1000 1.9208 -0.0274 0.0265 

2S-GI 2000 1.8392 0.0123 -0.0094  
3000 1.8060 0.0385 -0.0566   

1.7570 0.6264 -0.3459 

 

Algorithms t=L    
1000 8.6731 

GI 2000 6.7497  
3000 6.9010  
1000 8.1050 

2S-GI 2000 6.2351  
3000 5.8114 

 
6.2. ESTIMATION OF I(T) 
The CARMA model of $I(t)$ as the output and u(t) as the input is:  

𝐴𝐴(𝑞𝑞) = 1 − 1.0420𝑞𝑞−1 + 0.0541𝑞𝑞−2 
𝐵𝐵(𝑞𝑞) = −0.8791𝑞𝑞−1 + 0.8782𝑞𝑞−2 
𝐶𝐶(𝑞𝑞) = 1 − 0.1586𝑞𝑞−1 + 0.0987𝑞𝑞−2 

Table 3 
Table 3 Estimation Results for 𝝈𝝈𝟐𝟐 = (𝟏𝟏.𝟎𝟎𝟎𝟎)𝟐𝟐 

Algorithms t=L        
1000 -1.042 0.0541 0.8791 

GI 2000 -0.9243 -0.0612 -0.8699  
3000 -0.9436 -0.0405 -0.9078  
1000 -0.9297 -0.05 -0.8541 

2S-GI 2000 -0.941 -0.0471 -0.8699  
3000 -0.127 -0.8465 -1.7573 

True value 
 

0.9499 -0.0345 -0.8921 

 

Algorithms t=L        
1000 0.8782 -0.1586 0.0987 

GI 2000 0.7725 0.0158 -0.0080  
3000 0.7917 0.0165 0.0248  
1000 0.7871 -0.0219 -0.0229 

2S-GI 2000 0.7537 0.0324 0.0342  
3000 0.7697 -0.0238 0.0200   

1.7570 0.6264 -0.3459 
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Algorithms t=L    
1000 3.7344 

GI 2000 3.0066  
3000 2.3635  
1000 2.9884 

2S-GI 2000 2.1040  
3000 1.9732 

 
Table 4 

Table 4 Estimation Results for 𝝈𝝈𝟐𝟐 = (𝟐𝟐.𝟎𝟎𝟎𝟎)𝟐𝟐 

Algorithms t=L        
1000 -0.9189 -0.0712 -0.8799 

GI 2000 -0.8958 -0.0928 -0.9277  
3000 -0.9008 -0.0857 -0.8848  
1000 -0.9282 -0.0555 -0.8405 

2S-GI 2000 -0.9542 -0.0366 -0.9301  
3000 -0.1270 -0.8465 -1.7573 

True value 
 

-0.9175 -0.0647 -0.8817 

 

Algorithms t=L        
1000 0.6899 -0.0324 0.0286 

GI 2000 0.8068 0.0209 0.0159  
3000 0.8065 -0.0254 -0.0163  
1000 0.6995 0.0206 -0.0171 

2S-GI 2000 0.8130 0.0207 -0.0189  
3000 0.7981 0.0217 0.0273   

1.7570 0.6264 -0.3459 

 

Algorithms t=L    
1000 4.039 

GI 2000 3.3538  
3000 2.8344  
1000 3.8944 

2S-GI 2000 2.5776  
3000 2.2446 
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7. CONTROL OF TUMOR MODELS 

The final goal of this research is to make the amount of tumor cells minimum, 
therefore we take T(t)=0 as the desired output of the system. Based on control 
theory introduced in the third section and the identified polynomial model of T(t), 
the ultimate period and ultimate gain is 𝐾𝐾𝑝𝑝𝑝𝑝 = 1.0722 and 𝑇𝑇𝑢𝑢 = 0.4428 Therefore 
𝑞𝑞0 = 4.2383 and 𝑞𝑞1 = −7.7866 and 𝑞𝑞2 = 3.5774. 

The output and input of the feedback form is depicted in the next two figures. 
From tables and figures above, the below results are derived: 
• The system identification errors of the GI and 2S-GI approaches decrease 

as the data length increases. 
• 2S-GI method, compared to GI method, produces less error and therefore 

is more effective at estimating parameters. 
• As the noise to ratio signal rises, both introduced algorithms produce a 

larger amount of error. 
• From figures, it is perceived that both introduced algorithms converge at 

a final point and have a competent convergence rate. 
• The introduced controller proved that, it is able to make the amount of 

tumor cells in a specific period of time minimum. 
 
8. CONCLUSION 

In this contribution, mathematical theories and algorithms of  two identification 
methods of GI and 2S-GI for CARMA systems were developed. GI is an old method 
but 2S-GI is a novel method which introduced in this paper. Furthermore, a tumor 
model with one input and three outputs were presented by works of other scholars. 
By means of introduced parameter estimation approaches, the model were 
identified. Above that, by taking advantage of a ziegler nichols PID controller the 
amount of tumor cells were controlled and it was illustrated that the controller 
could minimize amount of tumor cells in a specific span of time. Also, the GI and 2S-
GI algorithm showed that they both are able to estimate parameter of a polynomial 
CARMA configuration in fast convergence rate and by producing an insignificant 
amount of error.  
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