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ABSTRACT 
This work pertaining to analytical and numerical studies on FTC in a FF layer with 
impact of coupled buoyancy-gravitational and surface-tension forces through the 
strength of internal heat source on the system subjected to the magnetic field 
dependent (MFD) viscosity effect. The lower boundary is considered to be rigid at 
either conducting or insulating to temperature perturbations, while upper boundary 
free open to the atmosphere is flat and subject to a Robin-type of thermal boundary 
condition. The Rayleigh-Ritz method with Chebyshev polynomials of the second kind 
as trial functions is employed to extract the critical stability parameters numerically. 
The onset of FTC is delayed with an increase in MFD (δ ) parameter and Biot number 
(Bi) but opposite is the case with an increase in Rayleigh number (M1), non-linearity 
of fluid magnetization (M3) and strength of internal heat source (Ns). Their effects 
are complementary in the sense that the critical Mac and Rmc decrease with an 
increase in Rt. 
 
Keywords: Buoyancy-Gravitational, Surface-Tension Forces, Galerkin Technique, 
Ferrofluids, Volumetric Internal Heating, MFD Viscosity 

 
1. INTRODUCTION 

         Ferrofluids (FFs) are synthesized by suspending single domain 
ferromagnetic nanoparticles stabilized in various nonmagnetic carrier fluids, 
which exhibit both magnetic and fluid properties Rosensweig (1985), 
Shliomis (1974). These fluids are now termed as magnetic nanofluids and the 
study of such fluids has been a subject of intensive investigations over 
decades due to their potential applications in magnetically heat controlled 
thermosiphons for technological purposes Charles (2002), Blums (2002). 
Thermal convection in an FF layer in the occurrence of magnetic field, called 
ferro- thermal-convection (FTC), has been studied extensively both 
theoretically and experimentally over the years to understand the heat 
transfer systems and the details are sufficiently documented in the review 
article by Nkurikiyimfura et al. (2013).  
        Most FFs are either water based, or oil based. The viscosity of water is far 
more sensitive to temperature variations and oils are known to have viscosity 
decreasing exponentially with temperature rather than linearly. Realizing the 
importance, several investigators considered exponential variation in 
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viscosity with temperature in analysing thermal convective instability in horizontal 
fluid layers, but the studies were limited to ordinary viscous fluids Kassoy and Zebib 
(1975), Blythe and Simpkins (1981), Patil and Vaidyanathan (1981), Patil and 
Vaidyanathan (1982). To our knowledge, no attention has been given to convective 
instability problems involving FFs, despite the importance of FFs in many heat 
transfer applications. For example, in a rotating shaft seal involving FFs the 
temperature may rise above 1000C at high shaft surface speeds. A similar situation 
may arise in the use of FFs in loudspeakers Lebon and Cloot (1986). The onset of 
FTC in a horizontal FF layer with temperature dependent viscosity in exponentially 
is examined Shivakumara et al. (2012). 

In many natural phenomena, the study of penetrative FTC in a saturated porous 
layer Nanjundappa et al. (2011) with the internal heating source and applied 
Brinkman extended Darcy model in the momentum equation analyzed the internal 
heat generation effect on the onset of FTC in an FF saturated porous layer 
Nanjundappa et al. (2011), Nanjundappa et al. (2012). Savitha et al. (2021) 
investigated the penetrative FTC in an FF-saturated high porosity anisotropic 
porous layer via uniform internal heating. Thus, the purpose of the present chapter 
is to study a general problem of coupled thermo- gravitational and surface-tension 
FC in an FF layer with magnetic field dependent (MFD) viscosity. The study helps to 
understanding the control of FTC by MFD viscosity, which is constructive in various 
problems associated by heat transfer particularly in material-science processing. In 
the current study, the bottom surface is rigid with either constant temperature or 
uniform heat flux, while the upper is un-deformable free surface of surface tension 
forces. Besides, the Neumann-type of boundary condition is imposed on the upper 
surface. Several investigators have studied both types of instabilities in isolation or 
together in a horizontal FF layer. 

 

2. PROBLEM FORMULATION 
Consider a layer of horizontal Boussinesq FF of constant depth d with a 

uniformly volumetric heat source strength, Q , and in the occurrence of 
perpendicular magnetic field 0H . The surfaces are maintained the constant 
temperatures at 0 / 2 ( 0)T T z+ ∆ =  and 0 / 2 ( )T T z d− ∆ = . The gravity, 

ˆg g k= −


, acting downward direction, where k̂ is the z-direction of unit vector. The 
stream of Bénard-Marangoni convection for thermocapillary force, σ (surface 
tension force), is given by 

 

                                                                   ( ){ }0 01 T T Tσ σ σ= − −                                            Equation 1 

where σT,  σ0 are positive constants. 

The Maxwell’s equations for magnetic field are implemented by 

 0H∇× =


or  ϕ∇=H


                                                                                 Equation 2 

 

0B∇ =⋅


                                                                                                                                   Equation 3 
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were 

  

0 ( )B M Hµ= +
  

                                                                                                            Equation 4 

With 

 

( , )HM M H T
H

=


                                                                                                        Equation 5 

 

and 

 
0 0( ) ( )aM M K T T H Hχ= − − + −                                                                     Equation 6 

The equation of momentum with variable viscosity is 

 

                                                                                                  ( ) { }00   pq q q g M H D
t

ρ ρ µ η∂  ⋅+ ⋅∇ = −∇ + + ∇ + ∇ ⋅ ∂ 

    


                                             Equation 7 

 

                                                                              The heat equation with internal heating Q is 

 

                                                                                                   2
0 , 0 0

, ,
V H t

V H V H

M DT M DHC H T k T Q
T Dt T Dt

ρ µ µ
    ∂ ∂ − ⋅ + ⋅ = ∇ +    ∂ ∂     

  
                                        Equation 8 

 

The conservation of mass equation is 

                                                    0=⋅∇ q                                                                                                                          Equation 9 

The state equation is 

[ ]0 01 ( )t T Tρ ρ α= − −                                                         Equation 10 

 

Here ( , , )q u v w=


 is the velocity, p is the pressure, t is the time, B


 is the 

magnetic induction and H


 is the intensity of magnetic field, M


 is the 
magnetization, 0μ  is the magnetic permeability of vacuum, CV,H is the specific heat 
capacity at constant volume and magnetic field per unit mass,  and kt is the thermal 
conductivity, ,

0 0
( / )H TM Hχ = ∂ ∂  is the magnetic susceptibility and  

0 0( / ) ,H TK M T= − ∂ ∂  is the  pyromagnetic co-efficient, tα  is the thermal 

expansion coefficient, 0ρ  is the density at 0T T= , 0 0 0( , )M M H T= , HH


= , 

MM


=  and the last term of Equation 7 denotes as [ ( ) ] / 2TD q q= ∇ + ∇
 


 is the 

rate of strain tensor. The fluid is assumed to be incompressible having variable 
viscosity. Experimentally, it has been demonstrated that the magnetic viscosity has 
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got exponential variation, with respect to magnetic field Rosenwieg et al. (1969) As 
a first approximation, for small field variation, linear variation of magnetic viscosity 
has been used in the form 0 (1 )Bη η δ= + ⋅

 
,  where δ


 is the variation coefficient of 

magnetic field dependent viscosity and is considered to be isotropic Vaidyanathan 
et al. (2002), 0η  is taken as viscosity of the fluid when the applied magnetic field is 
absent. 

The undisturbed quiescent state 

0bq =
                                                                                                                                      Equation 11 

 
2 2 2

20 0 0 0
0 0 2( )

2 1 2(1 )
t

b
g z Mp z p g z z zρ α β µ κ β µ κ β

ρ
χ χ

= − − − −
+ +

                               Equation 12 

 
2

0
1 1

( )
2 2b
Q z Q d zT z z T

k k
β= − + − +                                                                                                    Equation 13 

 

{ }0 0
ˆ( ) ( )

1b b
KH z H T z T k

χ
 

= + − + 

                                                                                 Equation 14 

 

 { }0 0
ˆ( ) ( )

1b b
KM z M T z T k

χ
 

= − − + 

                                           Equation 15 

 

Here we note that, ( )bT z ,  ( )bH z


, ( )bM z


 are distributed parabolically with 
the height of the FF layer due to the existence of volumetric heat source, Q . 
However, for 0Q = , the distributions of basic state are linear in z.   

To study the stability of the quiescent state and perturb the relevant variables 
in the corresponding governing equations with framework of the linear theory 

 

                                       qq ′=


, ( ) 'bp p z p= + , T = TzTb ′+)( , HzHH b ′+=


)( , MzMM b ′+=


)(  Equation 16 

                                                                Let the components of { }31 2
' ' ', , ( )bM M M z M+  { }31 2

' ' ', , ( )bH H H z H+     
be perturbed the magnetization and magnetic field, respectively. 

 Using these in Equation 2,Equation 6, linearizing, we obtain 

 

0
1 1 1

0
1 MH M H

H
 

+ = + 
 

                                                                                                                                                   Equation 17 
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0
2 2 2

0
1 MH M H

H
 

+ = + 
 

                                                                                                                                                  Equation 18 

 

                                                         ( )3 3 3 1  H M K T Hχ+ = − + +                                                                             Equation 19 

From Equation 17,Equation 19 and it is considered that ( ) 0 1 HdK χ+<<β ; 

( )2
0 11 2K Q d H kχ<< + . 

Experimentally, Rosenwieg et al. (1969) has demonstrated the exponential 

variation in magneto-viscosity, Be


⋅= δηη , where δ  is the variation of viscosity 
coefficient. Since the first approximation of small (linear) field variation in magneto-
viscosity has been used. Substituting Equation 16 in Equation 7 and applying the 
basic state solutions, removing the pressure p by operating two times of curl on the 
resulting equations and linearizing together with φ∇=H


, then gives 

 

 
{ }

( ) ( )

2 2 2
0 0 0 0 0 0 1

2
2 20

0 1 1
1 1 1 1

1 ( )

2 1 2

tM H w g T
t

KQ z Q d Q z Q dK T
k k z k k

ρ η δ µ ρ α

µµ β ϕ β
χ

∂ − + + ∇ ∇ = − ∇ ∂ 
   ∂

− − + − ∇ + − + − ∇   ∂ +   

                            Equation 20 

 

As before, using Equation 16 ,Equation 8 and applying basic state solutions, and 
linearizing, we obtain 

 

                                                                               
2

2 0 0
0 0 1

1 1
1

1 2
T KT Q z Q dT K k T w

t t z k k
µϕµ β

χ
  ∂ ∂ ∂   − − ∇ = − − +   ∂ ∂ ∂ +     

                      Equation 21 

                                                                      Where 00000 HKCC H,V µ+ρ=ρ  

Finally, Equation 2,Equation 3, after using Equation 16 together with Equation 
17,Equation 19, yields (after neglecting primes) 

 
2 20

12
0

1 1  0
1 1

M K T
H zz

ϕ ϕ
χ χ

 ∂ ∂
+ + ∇ − = + + ∂∂  

                                                                  Equation 22 

 

As the customary of convective instability analysis for each variable of , ,w T φ  
is expanded in following form by assuming the normal mode hypothesis (separation 
of variables) 

 

{ } { } ( ), , , , ( , ) i l x m yw T w T z t eφ φ +=                                                                                   Equation 23 
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 Substituting into Equation 20,Equation 22, we get 

 

{ }
2 2

2 2 2
0 0 0 0 0 02 2

2
2 2 0

0
1 1 1 1

1 ( )   

2 1 2

tM H a a w a g
t z z

KQ z Q d Q z Q da K a
k k z k k

ρ η δ µ ρ α θ

µφµ β β θ
χ

    ∂ ∂ ∂    − + + − − =
   ∂ ∂ ∂    

   ∂
+ − + − − − + −   ∂ +   

                                     Equation 24 

 

0 1 1

220 20 0 0
20 0 0

1
(1 ) 2

K T K T Q z Q da w
t C t z C k kz

µ µθ ϕ κ θ β
ρ χ ρ

    ∂ ∂ ∂ ∂    − = − + − − +     ∂ ∂ ∂ +    ∂   

            Equation 25 

 

( ) 0   1 1 2

0

0
2

2
=

∂
θ∂

−ϕ







+−

∂
ϕ∂

χ+
z

Ka
H
M

z
                                                              Equation 26 

 

Thus, Equation 24,Equation 26 are the governing linearized perturbation 
equations and they are non- dimensional zed using the following quantities: 

 

                                                                                
21   * , *,  *,  t = t*, *,d dz z d w w a a

d d
ν β νθ θ

ν κ
= = = =  

           
( )

2   *,
1  

K dβ νϕ ϕ
χ κ

=
+

    
0 0 0

1 *
( )M H

δ δ
µ

=
+

                                    Equation 27 

 

 After using Equation 25 in Equation 22, Equation 24, we obtain (ignoring the 
asterisks) 

{ } ( ) ( ) ( )
22 2 2 2 2 21  ( )t mD a w D a w a R a R f z D

t
δ θ φ θ∂

+ − − − = − −
∂

 

 

( ) ( )2 2
2 2Pr Pr ( ) (1 )D a M D f z M w

t t
θθ ϕ∂ ∂

− − + = −
∂ ∂

                                 Equation 28 

 

( )2 2
3 0D a M Dϕ θ− − =                                                                                  Equation 29 

 Where ( ) (1 2 ) 1.sf z N z= − − . 

We set 

 { } { }( ), , ( , ) , , [ ]w z t W z exp tθ ϕ ω= Θ Φ                                       Equation 30 

Here, ω  denoted as the growth rate, which is complex frequency.  
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Substituting into Equation 26 ,Equation 28, we obtain 

 

 ( )2 2 2 2 2 2(1 ) (D ) D W ( ) ( )t ma a a R a R f z Dδ ω + − − − = Θ − Φ − Θ  
      Equation 31 

 

( )2 2
2D Pr  [ (1 2 ) 1](1 )Sa N z M Wω− − Θ = − − −                                 Equation 32 

 

 ( ) 0 D 3
22 =Θ−Φ− DMa                                                                              Equation 33 

 

The boundary conditions for these equations are 

1. Lower boundary rigid-ferromagnetic at fixed temperature as 

                     (0) (0) (0) (0) 0W DW= =Θ = Φ =  

2. Lower boundary rigid-ferromagnetic at fixed heat flux as 

 

                    (0) (0) (0) (0) 0W DW D= = Θ = Φ =                                                  Equation 34 

 

After linearizing the equations for balancing the surface tension gradient with 
shear stress at the free surfaces (Pearson 1958), we have 

 

 
z
uz

x b
s

zx
∂
∂

=
∂

∂
= )(ηστ ;  

z
vz

x b
s

zy
∂
∂

=
∂

∂
= )(ηστ                                      Equation 35 

where sσ  is the surface tension and  zxτ , zyτ  are the shear stress Using                                         
Equation 37 yields 

 

 [ ] 2

2

00002

2

2

2
)(1

z
wHM

yx
ss

∂
∂

++−=
∂

∂
+

∂
∂ µδησσ

                                      Equation 36 

 

For most of the liquids as the temperature rises, the variation between the 
liquid and its vapor phase decreases. Thus, the suitable boundary conditions of 
surface tension at the free surfaces are 

 

 0w= ; [ ]
2 2 2

0 00 0 2 2 21 ( ) T
w T TM H

z x y
η δ µ σ

 ∂ ∂ ∂
+ + = + 

∂ ∂ ∂ 
                         Equation 37 

 

Using Equation 39 and non-dimensionlizing the equations, we get 
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0=W   and  0)1( 22 =++ θδ aMaWD                                                       Equation 38 

where, aM  denoted as the Marangoni number ( )/T T dσ µκ= ∆ . 

Upper boundary free ferromagnetic at fixed heat flux is 

 

 2 2(1) (1 ) (1) (1) (1) (1) (1) 0aW D W M a D Bi Dδ= + + Θ = Θ + Θ = Φ =      Equation 39 

were, Bi denoted as the Biot number ( )/ th d k=  

 

3. METHOD OF SOLUTION 
The GT is applied to obtain the problem of eigenvalue is to study the linear 

system of Equation 32 with Equation 35 and                                                                                                
Equation 41. The unknown factors , andW Θ Φ  can be expanded upon the 
complete set: 

 

1 1 1
( ), ( ), ( )

n n n

i i i i i i i i i
i i i

W A W z C z D z
= = =

= Θ = Θ Φ = Φ∑ ∑ ∑                           Equation 40 

 

Substitute in Equation 32 Equation 32, multiplying the resulting equations 
respectively by ( )iW z , ( )i zΘ , ( )i zΦ  and carrying out  the integration by parts from 
z = 0 to z = 1 and using Equation 35 and Equation 41  we obtain 

 

                                                                                            0ji i ji i ji iC A D C E D+ + =                                                                                                        Equation 41 

 

0=+ ijiiji CHAG                                                                                              Equation 42 

 

0=+ ijiiji DJCI                                                                                                Equation 43 

From Equation 43,Equation 45 have a non-trivial solution if 

 

0 0.

0

ji ji ji

ji ji

ji ji

C D E

G H

I J

=                                                                                 Equation 44 

Were 

[ ]><++><++><+= ijijijji WWaaDWDWaWDWDC )()2()1( 22222 ωωδ  
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[ ]2 2 2(1 2 ) 1 (1) (1)j iji t j i m s j iD a R W a R N z W DW a Ma= − < Θ > + < − − Θ > + Θ  

[ ]2 (1 2 ) 1ji m s j iE a R N z W D= − < − − Φ > , [ ](1 2 ) 1ji s j iG N z W=< − − Θ >  

( )2 Pr (1) (1)jji j i j i iH D D a Biω= < Θ Θ + + Θ Θ > + Θ Θ  

jji iI D= < Φ Θ > ,  2
3j ji ijiJ D D a M=< Φ Φ > + < Φ Φ >  

 Where  ∫=><
1

0
.)( dz  

The eigenvalue is extracted from Equation 45. A trivial function iW ,  iΘ ,  iΦ  
can be considered to satisfy the boundary conditions Equation 35, Equation 36 and 
Equation 41 by selecting the trial functions as 

 

 ( )2 *
i i-1W 1 Tz z= − ,   2 *

i-1
21 T
3i i z zξ  Φ = = − 

 
 

(i) For lower insulating case: 1 *
i-1Ti

i z −Θ = ,                                           Equation 45 

 

 (ii) For lower conducting case: *
i-11 T

2i
zz  Θ = − 

 
 

 Here *
iT s denoted as the second kind Tchebyshev’ polynomials, such that 

, ,i iW Θ  iΦ  satisfy Equation 35, Equation 36 and Equation 41 except, namely 
2 2(1 ) (1) (1) 0aD W M aδ+ + Θ =  and (1) (1) 0D BiΘ + Θ =  however the residual 

from this equations is incorporated as a residual from Eqs. Equation 32,Equation 34 

 

4. NUMERICAL RESULTS AND DISCUSSION 
It may be illustrated that Equation 41 with ω = 0 leads to the Marangoni number 

Ma   corresponding wavenumber a with ,  , ,t mR R Ns δ  and 3M . The inner 
products concerned in the equations are assessed analytically in order to keep away 
from the errors in numerical integration. The reveals the computations that the 
convergence in resulting Mac crucially depends on δ . The presented results for i = j 
= 8 the order at which the convergence is attained, in general.  The critical Marangoni 
number cMa  is determined by corresponding critical wavenumber ca . The results 
thus attained for different 3, , , , t mR R Ns Mδ  and 3M are existing graphically in 
Figure 2 and also in Table 1 and Table 2 

To solve the eigenvalue problem from Equation 41 by employing the Galerkin-
type of WRM. In order to confirm the numerical technique is applied, the values 
( , )c cMa a  and ( , )tc cR a are very close to the existing values of Nield  (1964) 
for 0mR δ= = and Sparrow et al. (1964) for  0mR Ma δ= = =  under the limiting 
condition in Table 1 and Table 2, respectively. The comparisons of calculated present 
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results agree well with results of previous numerical investigations are given in 
Table 1 and Table 2. It is evident that the results are in good agreement between the 
present and published previously. This validates the applicability and exactness of 
the method applied in solving the convective instability problem considered 

Table 1 Comparison of (Mac, ac) and (Rtc, ac) for Rm = δ=0 
 

Nield [18] Present analysis  
Lower 

insulating 

 
Lower 

conducting 

 
Lower 

insulating 

 
Lower 

Conducting 

 

Bi Mac ac Rc ac Mac ac Rc ac 
0 79.607 1.993 669 2.086 79.6067 1.9929 668.998 2.0856 

0.01 79.991 1.997 670.38 2.089 79.9913 1.9966 670.381 2.0888 
0.1 83.427 2.028 682.36 2.117 83.4267 2.0281 682.36 2.1162 
0.2 87.195 2.06 694.78 2.144 87.1951 2.0603 694.779 2.1437 
0.5 98.256 2.142 727.42 2.212 98.2562 2.1423 727.422 2.2116 
1 116.127 2.246 770.57 2.293 116.127 2.2462 770.57 2.2928 
2 150.679 2.386 831.27 2.393 150.679 2.3864 831.27 2.3926 
5 250.598 2.598 925.51 2.519 250.598 2.5978 925.51 2.519 
10 413.44 2.743 989.49 2.589 413.44 2.7426 989.492 2.5889 
20 736 2.852 1036.3 2.632 736 2.8524 1036.3 2.6323 
50 1699.62 2.941 1072.19 2.661 1699.62 2.9406 1072.19 2.6615 

100 3303.83 2.976 1085.9 2.672 3303.83 2.9755 1085.9 2.6718 
1000 32170.1 3.01 1099.12 2.681 32170.1 3.0101 1099.12 2.6813 
1010 32.073´1010 3.014 1100.65 2.682 32.073´1010 3.0141 1100.65 2.6823 

 

Table 2 Comparison of (Rtc , ac ) for Ma = Rm = δ = 0 (lower and upper insulating case) 

Bi Sparrow et al. [19] 
Rc ac 

Present study 
Rc ac 

0 320 0 320 8.72918´10-17 
0.01 338.905 0.58 338.905 0.5831 
0.03 353.176 0.76 353.158 0.7623 
0.1 381.665 1.015 381.665 1.0151 
0.3 428.29 1.3 428.29 1.2992 
1 513.792 1.64 513.79 1.6438 
3 619.666 1.92 619.666 1.9211 

10 725.15 2.11 725.148 2.1055 
30 780.24 2.18 780.2238 2.176 

100 804.973 2.2 804.973 2.2029 
¥ 816.748 2.21 816.746 2.2147 

 

Figure 1,Figure 6 illustrates the neutral stability curves corresponding for 
different Bi , δ , Ns , 3M , mR  and tR  as well as different bounding surfaces 
(surfaces of lower insulating and lower conducting). The neutral stability curves are 
concave growing for each of these surfaces and the curves of lower conducting case 
lie above lower insulating surfaces. The neutral stability curves shift growing with 
increasing Bi Figure 2, δ Figure 3 representing that their result is to increase the 
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stability region. Besides, decrease the stability of the region by increasing  
Ns Figure 4,  M 3  Figure 5 Rm Figure 6 and Rt  Figure 7 

 

Figure 1 Ma against a for R1= Rm =50, NS=5,  δ = 0.5and M3 = 1 

 

 

Figure 2  Ma against a for Rt = Rm = 50 Ns = Bi = 5 and M3 = 1 
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Figure 3 Ma against a for Rt = Rm = 50, Bi = 5, δ = 0.5 and M3 = 1 

  

 

Figure 4 Ma against a for Rt = Rm = 50, Bi = 5, δ = 0.5 and Ns = 5 
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Figure 5 Ma against a for Rt  50, Bi = Ns = 5, δ = 0.5 and M3 = 1 

 

 

Figure 6 Ma against a for Rm = 50, Bi = Ns = 5, δ = 0.5 and M3 = 1 
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Figure 7Mac against Bi for different Rt when Rm = 50, Ns = 5, δ = 0.5 and M3 = 1 

 

In Figure 8,Figure 11 analogous to solid curves are corresponding to lower 
conducting and dotted curves corresponding to lower insulating. The plot of cMa  

against Bi  for various tR  for 50,mR =  5Ns = , 0.5δ =  and 3 1M = Figure 7 It 
shows that the cMa value of lower conducting and lower insulating by increasing in 
Bi . Clearly, the results of lower insulating case are advancing the FTC compared to 
lower conducting. A further reveal that an increase in Bi  is to delay the onset of 
FTC. This may be owing to the fact that with an increase in Bi , the boundary of free 
surface departs from good conductor of heat and hence there is an increase in Mac. 

The effect of MFD viscosity parameter δ on the onset of FTC in a FF layer is 
presented in Figure 9 for fixed 50,mR =  5Ns = , 5Bi =  and 3 1M = . It is viewed 

that cMa  increases with increasing δ  indicating its effect is to stabilize the system. 
That is, the effect of δ  increasing is to delay the FTC in the existence of magnetic 
field. To explore the effect of strength of dimensionless internal heat source sN  on 

the measure for the onset of FTC, the variation of cMa  is displayed against sN for 

50,mR =  0.5δ = , 5Bi =  and 3 1M = . in Figure 9. It is seen that tcR decreases 

quite hastily first and then quite gradually monotonically with sN  representing the 

influence of increasing internal heating is to decrease cMa  and thus destabilize the 

system. In particular, it is seen that the curves of cMa  coalesce for various physical 
parameters as the strength of internal heating sN is increased. 
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Figure 8  Mac against δ for different Rt when Rm = 50 Ns = 5 Bi = 5 and M3 = 1 

 

 

Figure 9  Mac against Ns for different Rt when Rm = 50, δ = 0.5, Bi = 5 and M3 = 1 
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Figure 10 Mac against M 3 for different Rt when Rm = 50 Ns = 5 Bi = 5 and δ = 0.5 

 

 

Figure 11 Mac against Rmc for different Rt when M3 = 1 Ns = 5 Bi = 5 and δ = 0.5 

The effect of increase in nonlinearity of fluid magnetization (i.e. M3 ) is shown 
in Figure 10 for different tR when 50,mR =  5Ns = , 5Bi =  and 0.5δ = . From the 
figure, it is seen that an increase in M3 is to decrease cMa  and thus increase in the 
magnetization has destabilizing effects on the system but this effect is very 
insignificant. 
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The locus plot of cMa against for various tR  for 3 1,M =  5Ns = , 5Bi =  and 
0.5δ = Figure 11. It shows that they are bridging the space between lower 

insulating and conducting cases by increasing in tR . For 0tR = , the case 

corresponds to only the surface tension force are in effect. The amount of 0tR ≠ is 
associated to the importance of buoyancy gravitational force. It is observed that 
increase in tR leads to decrease cMa and mcR signifying that the FF carries more 
heat efficiency than the ordinary viscous fluid case. This due to an increase the 
destabilizing the coupled magnetic and surface tension forces with increasing 
buoyancy gravitational force, tR , thus the more easily for fluid flow in the system.  

 

5. CONCLUSIONS 
The linear stability theory is applied to study the effect of MFD viscosity on 

coupled buoyancy-gravitational and surface-tension forces on FTC in a FF layer 
through the strength of internal heat source on the system under the conditions of 
lower insulating/conducting case.  The FF layer is heated from below and its top 
surface is subjected to a surface-tension force decreasing linearly with temperature. 
The problem of resulting eigenvalue is obtained numerically by utilizing the 
Galerkin WRT technique. It is shown that the effect of MFD viscosity is to enhance 
the onset of FTC and hence MFD viscosity plays a stabilizing role on the system. The 
increase in buoyancy-gravitational force, the forces of magnetic and surface-tension 
effect is to destabilize the system. Their effects are complementary in the sense that 
the critical cMa and mcR decrease with an increase in tR . The increase in Bi , δ  and 
decrease in  Ns , M3 are having stabilizing effect on the system. 
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