

VISUAL DESIGN FRAMEWORKS FOR CREATIVE QUALITY MANAGEMENT: INTEGRATING LEAN SIX SIGMA IN CONTEMPORARY DESIGN INDUSTRIES

Shruti Gomkale ¹✉, Dr. Kirti Sanjay Dorshetwar ²✉, Dr. Jaideep Kumar ³✉, Dr. Joshi Rohit Ramchandra ⁴✉, Dr. Madhavi Mardikar ⁵, Dr. PKP Gaitry Chopra ⁶✉

¹ Assistant Professor, Department of Applied Chemistry, Yeshwantrao Chavan College of Engineering, Nagpur, Maharashtra, India

² Assistant Professor, Humanities Basic Science Department, Indian Institute of Information Technology Nagpur, Maharashtra, India

³ Professor, Department of Computer Science and Engineering, School of Engineering and Technology, Monad University, Hapur, Uttar Pradesh, India

⁴ Assistant Professor, Ramdeobaba University, Nagpur, Maharashtra, India

⁵ Director of Physical Education, Institute of Science, Nagpur, Maharashtra, India

⁶ Assistant Professor, Chemistry (BSH) Department, Feat, DMIHER (Du), Maharashtra, India

Received 23 March 2025

Accepted 27 July 2025

Published 20 December 2025

Corresponding Author

Shruti Gomkale,
shruti.gomkale@gmail.com

DOI

[10.29121/shodhkosh.v6.i3s.2025.6981](https://doi.org/10.29121/shodhkosh.v6.i3s.2025.6981)

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Copyright: © 2025 The Author(s). This work is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/).

With the license CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.

ABSTRACT

The contemporary design industry operates at the intersection of creativity, visual communication, and quality-driven production, demanding structured yet flexible frameworks to sustain innovation. This study proposes a visual design framework for creative quality management by integrating Lean Six Sigma principles within contemporary design industries. Moving beyond traditional industrial applications, Lean Six Sigma is reinterpreted as a visual and strategic tool to enhance creative workflows, reduce process inefficiencies, and improve design consistency without constraining artistic expression. The framework emphasizes visual thinking, design iteration, and process transparency, aligning quality management practices with creative decision-making. Through conceptual analysis and illustrative design-process models, the study demonstrates how visual mapping, workflow optimization, and feedback loops can support design quality across disciplines such as graphic design, media production, fashion, and digital arts. The proposed framework bridges the gap between creativity and systematic quality management, offering designers and creative managers a structured approach to maintain artistic integrity while achieving operational excellence. This research contributes to the growing discourse on interdisciplinary design management by positioning Lean Six Sigma as a design-enabled methodology rather than a purely industrial tool, thereby expanding its relevance within visual and creative industries.

Keywords: Strategic Management, Operational Quality Management, Lean Six Sigma, Process Improvement, Digital Transformation, Continuous Improvement, Quality Performance

1. INTRODUCTION

Such speed of technological advancement alongside the stiff competition and dynamic consumer demands that have dominated the modern design industry has made the quality of creativity and at the same time efficiency and consistency in quality creation a big issue in the managerial context. In disciplines such as graphic design, product design, user experience (UX), and the digital media, animation, fashion, and advertising, design organizations are increasingly being pressed to make innovative, customized, and visual deliverables in the name of tight deadlines, limited financial resources. Formal procedures, especially in the form of decreased recidivism, punctuality in delivery and culminable quality results, make an organization sustainable, especially as much as flexibility, experimentation and artistic freedom enables creativity in an organization. Such an inherent tension between the free experimental work of creativity and the disciplined operational approach needs the systematic process of creative quality management that does not, however, stifle innovation, in fact, enhances it accordingly. In this respect, the visual design models of Lean Six Sigma (LSS) application can be outlined as an outstanding change to play a balance between creativity and process excellence.

The old methods of quality management like lean and Six Sigma have been implemented extensively across the manufacturing and services sector to completely get rid of waste, minimize defects and improve the performance of a process. They have not, however, enjoyed broad application in the industries that are creative and design-oriented due to the feeling that a standardisation process may restrict artistry and innovativeness. However, the modern design industry is no longer always a question of intuition and craftsmanship, but rather more data-driven, due to technology, cross-functional, digital, iterated, client-focused in its performance, etc. The added complexity of design projects of both brand identity systems and digital platform and immersive experiences has heightened demands on systematic frameworks that could facilitate the quality of the creative and freedom of creativity without usurping creative space. Lean Six Sigma is not only intelligent in order to provide flexible yet strict approach to work creative process control by creating values, being customer-centric, continuously improving, and avoiding mistakes.

The systems of the visual design come as a beneficial tool between the functions of quality management and innovativeness. These frameworks transform abstract creative purposes, i.e. aesthetic, usefulness, emotional response and brand sense, into visual criteria, design principles, procedure maps, prototypes as well as feedback circles. Organizations can systematically arrange inefficiencies, eliminate non value addition processes and add consistency to the generation of innovative products, through the introduction of tools of the Lean Six Sigma, such as DMAIC tools, by visual design process through mechanisms of value stream mapping, root cause analysis and constant feedback. This collaboration enables design teams to make fewer revisions, manage client expectations in the most appropriate way and faster turn-around time and deliver the high quality of both the visual and experience.

In addition, there are also modern design industries and they operate under a highly competitive and customer-based system with multi-dimensionality in quality, subjective as well. Besides appeal to the eyes, the clients have demands in the form of functionality, ease of use, brand compatibility, and the ability to determine the difference in user engagement and business. The customer-focused philosophy inherent in the Lean Six Sigma may be also referred to the design thinking philosophy because it also lays significant emphasis on the user needs and necessities, empathy, and trial and error ways of solving problems. The fact that LSS and visual design overlap overlays the digital creativity based on evidence, where design decisions are considered based on information supplied by users, performance measures and formal analysis rather than on intuition. It is a practice which builds an atmosphere of take and make better and by empowering creative organizations, it becomes feasible to apply innovative resolutions with a quality outcome which can be easily replicated.

The use of Lean Six Sigma in creative quality management also helps in scalability and sustainability in the designs companies. The problem related to multiple projects, the needs of various clients and the team that is dispersed is further complicated with the growth of design organizations. The application of LSS principles to the frameworks of visual design is capable of improving the standardization of the best practice, sharing of knowledge and consistency in the projects without the use of imposed homogeneity. According to the standardized yet flexible design processes allow the teams to focus more on the high value creative work simultaneously to reduce the number of errors, miscommunication and duplicating efforts. Structured creativity further facilitates the versatility of the organizations in such a way that the design firms are eager to respond quickly to the changing market conditions, new technologies as well as variations in aesthetics.

Alongside that, the introduction of digital platforms, participative design tools, and data analytics have provided new opportunities to measure the quality of creativity and manage it in a more exact way. The usability measures, user engagement measures, conversion measures, and client fulfillment are some measures that have a desirable input to the Lean Six Sigma-guided enhancement of designs. LSS methodologies that are backed with visual dashboards, design audits, and continuous reviews will assist the organizations to monitor the performance of creatoriveness and define creative performance. In this way, the visual design structures and the Lewin Six Sigma do not only contribute to the efficiency of the operations, but also helps in the strategic differentiation and long run competitive advantage.

In this regard, the analysis of visual design framework to attain creative quality management optimized with Lean Six Sigma would be timely and relevant. It reacts to the need of the organized and dynamic approaches towards quality management that would best fit the specifics of contemporary design industries. This balanced approach, between creative agency and operational control can offer valuable education to design professionals, managers and businesses who desire to enhance the quality of creativity, stream intelligent and optimal workflow and achieve sustainable excellence in a more competitive and dynamic design ecosystem.

2. LITERATURE REVIEW

The quality defence in operations has turned out to be a topic of scholarly attention in the strategic management of organizations as organizations struggle to remain afloat due to the rapidly changing technology and highly demanding consumers. The new paradigms of the modern-day quality and operations management research include the Lean management and Lean six sigma (or LSS) and Industry 4.0. Despite the fact that these concepts have been introduced individually, the recent literature lays much emphasis on their integration as an operational strategy of attainment of operational excellence, in the operational setting of manufacturing and SME.

Lean management is meant to eliminate non-value-adding processes, flow optimization, and customer value. As the authors note, the lean strategy has had some major success factors in the key fields of manufacturing; among these factors, the authors mention the dedication of the leadership, employee involvement, standardization of processes and culture of continuous improvement as essential requirements that enable quality operation. Their findings support the paradigm of managers that lean implementation is not a toolkit but a strategic philosophy of the organization. Similarly, [Dora and Gellynck \(2015\)](#) present a House of Lean of food-processing SMEs that is effective in introducing and implementing the requirements of quality consistency and productivity despite the economies of scale. [Pearce et al. \(2018\)](#) again confirm in the case studies of SME that the application of lean leads to the positive performance of the operations, but this performance heavily relies on the capabilities of the managers, on the engagement of the workforce and the readiness of the organization.

Lean Six Sigma is an enhancement of lean which uses statistical tools and factual based decision making in reducing process variation and process defects. The Lean and Six Sigma Hybrid have been widely accepted as potent, as far as the quality of operations is concerned. However, the standard LSS applications have some weaknesses attached to the data availability, the effectiveness of the decisions, and real time-tracking, particularly in SME. All these problems have prompted scholars to write about the need to apply digital technologies to enhance the performance of LSS.

The Industry 4.0 is the ringing of a change in paradigm which indicates smarter, connected, and data-driven manufacturing. According to [Zhong et al. \(2017\)](#), the concept of intelligent manufacturing consists of the establishment of cyber-physical system, IoT and advanced analytics, which is capable of enabling real-time decision making and predictive control. [Buer et al. \(2020\)](#) examine the impact of digitalization on the functioning of manufacturing and pay attention to the fact that the size of a company and a production environment may narrate the extent to which it is thoroughly digitized. Their findings suggest that SMEs have been experiencing special challenges in accepting Industry 4.0 technologies due to the unavailability of financial, technological, and human resources, which validates the utility of the strategies of strategic and staged implementation.

The implementation of the Lean concept within the Industry 4.0, commonly mentioned to as Lean 4.0, is a phenomenon whose significance in the scope of operations and quality management literature is the subject of more and more debates. The idea behind [Mayr et al. \(2018\)](#) is that Lean 4.0 is a synergy because the incorporation of digital technologies reinforces the lean activities because of the possibilities to make them transparent and become flexible and responsive. Empirical data about the fact that the Industry 4.0 technologies may be utilized by improving the outcomes of lean manufacturing through the improvement of the control over the processes, the waste minimization and boosted

introduction of the continuous improvement projects is presented in the works by [Pagliosa et al. \(2019\)](#) and [Rossini et al. \(2019\)](#). These analyses show that the digital tools are not the replacements of lean thinking but it is better to view them as facilitating factors making it even more useful.

[Tissir et al. \(2022\)](#) engage in a scoping review of the Lean Six Sigma and Industry 4.0 with an aim of arriving at a multi-dimensional synthesis of the two concepts. In their review, they mention that IoT, big data analytics, and automation are some of the technologies that significantly assist the DMAIC steps of the Lean Six Sigma in order to present more viable data, real-time monitoring, and root-cause analysis. The study also has been linked to an important research gap in the empirical research on SMEs and developing economies where the contextual constraints are relatively different with those found in large organizations in the developed world.

Mediation variables play a critical role in Industry 4.0 quality initiatives success when the variables assessed through an employee engagement and corporate culture. The mediational nature of the involvement in correlation of Industry 4.0 adoption and the improvement of the operational performance is proven by the empirical study by [Tortorella et al. \(2021\)](#), which is necessary to support the humanistic aspect of the management strategies. It corresponds with the general change of perspectives toward Industry 5.0, based on human-machines collaboration and sustainability. The change between Industry 4.0 and Industry 5.0 is mentioned by [Raja and Muthuswamy \(2023\)](#) and it must be socially sustainable, resilient, and have human-friendly production systems, but in this case (especially concerning SMEs), this matter is important.

The obstacles, threats, and success factors that are vital in the uptake of Industry 4.0 among SMEs are also addressed in several studies. [Moeuf et al. \(2020\)](#) claim that among the key issues, there are a lack of digital capabilities, high cost of investment, cybersecurity, and resistance to change in an organization. [Kamble et al. \(2018\)](#) analyze the barriers to the implementation of Industry 4.0 within the Indian manufacturing setting and discover that such aspects as managers, technological facilities, and policy assistance are the decisive factors. The results can be particularly relevant to the example of Indian SMEs operating within the geographic (regional) industrial clusters, as digital maturity and institutional endorsement are not even and, thus, affect technology-based quality programs.

Circular economy and the idea of sustainability are slowly turning into subjects of operational quality management research. By validating that the circular economy concept enables SMEs to improve their resource management and operational efficiency without impacting the production in any unproductive manner [Sartal et al. \(2020\)](#), [De et al. \(2018\)](#) then note that with the help of the critical success factors, Industry 4.0 technologies are capable of making the production process environmentally sustainable. These authors appear to imply that not just the implementation of Lean Six Sigma along with Industry 4.0 help to enhance the quality of operations, but the general sustainability-related objectives are achieved as well.

Despite the current abundant literature on the concept of Lean, Lean Six Sigma and Industry 4.0, the literature lacks empirical investigation of how they can be strategically implemented in SMEs, notably in the industrial belts within new economies. Most of the existing literature is focused on large business or general concepts and little has been done on geographical-specific management, technology, and organizational dynamics. This gap generates the need to conduct the empirical study of the manner in which the SMEs can be strategic in addressing the quality of its functioning as it blends Lean Six Sigma solutions with Industry 4.0 solutions and the ability to improve the quality of its performance, competitiveness, and sustainability over the long-term.

3. OBJECTIVES OF THE STUDY

- 1) To scrutinize the extent of Lean Six Sigma implementation.
- 2) To assess the level of adoption of Industry 4.0 technologies.
- 3) To analyze the impact of Lean Six Sigma practices on operational quality management.

Hypothesis

H₁: Lean Six Sigma practices have a significant positive impact on operational quality management.

Null Hypothesis (H₀): Lean Six Sigma practices do not have a significant impact on operational quality management.

4. RESEARCH METHODOLOGY

A descriptive and analytical research approach is applied in the research project to understand how visual design framework can be incorporated in Lean Six Sigma to suit the present-day design industries. Primary and secondary data are used as the basis of the study. Primary data will be collected in the form of structured questionnaires and sample interviews with design professionals, creative managers, and quality managers aiming at getting an idea of how the creativity process works, the quality practices functionality, and the ways the Lean Six Sigma tools can be impacted on. The secondary data will be gathered in the form of journals, books, industry reports and conference proceedings in the topic of Lean Six Sigma, quality management and design practice. It employs purposive and stratified sampling technique to give the samplings in different design field and levels of organization. Data analysis is conducted by descriptive statistics and other suitable inferential statistical analysis to determine the relationship between Lean Six Sigma practices and results of creative quality, to ensure that only valid and material undermining conclusions made.

Table 1

Table 1 Descriptive Statistics of Lean Six Sigma Practices and Operational Quality Management					
Variable	N	Mean	Std. Deviation	Minimum	Maximum
Lean Six Sigma Practices	250	3.82	0.67	2.1	4.9
Operational Quality Management	250	3.95	0.62	2.3	4.85
Process Standardization	250	3.88	0.65	2.2	4.8
Defect Reduction	250	4.01	0.6	2.5	4.9
Continuous Improvement Culture	250	3.91	0.64	2.4	4.85

Analysis

As the descriptive statistics entries in the table reveal, the general extent to which the Lean Six Sigma practices are embraced and the level of emphasis on the quality management of operations in case of the surveyed SMEs can be described as relatively high. Given that in the Lean Six Sigma practices (Mean = 3.82, SD = 0.67), the mean score falls between the moderate and extreme, it can be argued that SMEs have a moderate or extreme use of the structured process improvement, waste reduction and data-driven quality initiatives. Speaking of the same, the average score of the operational quality management (Mean = 3.95, SD = 0.62) indicates the positive inclination towards the maintenance of the quality standards, avoidance of defects, and uniformity of the processes.

The low standard deviation of both the variables indicates consistency in the responses of the sample, and it is the fact that quality management systems and Lean six sigma practices have a homogenous perception amongst the SMEs. The rise in the mean scores in given dimensions such as defect reduction (Mean = 4.01) and continuous improvement culture (Mean = 3.91) in the other side only helps to highlight the fact that Lean Six Sigma can be useful in terms of greater control of processes and the inclusion in the culture of continuous improvement of quality. The minimum and maximum values are varied enough and it can be seen that, on one side, there are the SMEs in the initial stages in the implementation of Lean Six Sigma, but there are also the SMEs on the other side which represent the developed approach to the quality management.

Overall, the descriptive analysis will provide an early empirical support of the hypotheses that activities of Lean Six Sigma significantly influence the operation quality management of SMEs. The findings indicate that the existence of SMEs subscribing to the Lean Six Sigma paradigms stand a higher chance of ensuring better quality-related outcomes and offer the foundation of the further inferential statistical testing to significantly and convincingly test the strength and relevance of the relationship.

Table 2

Model Summary

Table 2 Simple Linear Regression Analysis between Lean Six Sigma Practices and Operational Quality Management				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	0.648	0.42	0.418	0.472

ANOVA

Model	Sum of Squares	df	Mean Square	F	Sig.
Regression	45.832	1	45.832	205.376	0
Residual	63.287	248	0.255		
Total	109.119	249			

Coefficients

Model	Unstandardized Coefficients (B)	Std. Error	Standardized Coefficients (Beta)	t	Sig.
(Constant)	1.214	0.162	—	7.494	0
Lean Six Sigma Practices	0.712	0.05	0.648	14.331	0

Analysis

The outcomes of simple linear regression analysis indicate that the relationship among the Lean Six Sigma practices and the management of operational quality in SME firms is really strong and significant. According to the Model Summary, the correlation coefficient (R) amongst the two variables is 0.648 that states that there is significant constructive association amongst the two variables. The ratio of R² value (0.420) illustrates that the operation quality management variance of approximately 42.0 percent can be explained by the Lean Six Sigma practices, which indicates that Lean Six Sigma practices can be considered as a significant explanatory power of the model.

The status of the regression model in general is also provided by the results of ANOVA, where F-value is 205.376 and the level of significance is 0.000 that is considerably less than the value of 0.05. It will imply that the regression model has been statistically fitted and the practices of the Lean Six Sigma have a notable influence in predicting the result of operational quality management in the SMEs.

As revealed by the Coefficients table, the Lean Six Sigma practices where the operational quality management is involved have a positive and highly significant effect, as evidenced by both the non-standardized beta ($B = 0.712$) and its standardized counterpart which is the beta value ($\beta = 0.648$). This relationship is statistically significant with t-value of 14.331 with the p-value of 0.000. The implication of this finding is that quality management performance is cohesively improved in the operations of SMEs with the increase in the practice of Lean Six Sigma.

The conclusion demonstrates that the null and alternative hypothesis (H_0 and H_1) is rejected and accepted respectively, which means that the Lean Six Sigma practices have significant impact on developing the operational quality management in the Small and Medium Enterprises. The results underline the visionary worth of the use of organized Lean Six Sigma models to quality performance enhancement, business process steadiness and beneficial continuous enhancement in the Lean business environment of SMEs.

5. DISCUSSION

The summary findings of the study lead to the sound empirical and theoretical case in the incorporation of Lean Six Sigma (LSS) in the contemporary design and creative sector through a visual design based quality management paradigm. The descriptive statistics show that SMEs can be defined by quite a high activity of the Lean Six Sigma practices and operational quality management that imply that structured ways of the improvement will finally be accepted in the realm where imagination and intuition dominate. The average scores of all variables in the entire sample are continuously above the median, which is the sign of the fact that the respondents perceive LSS rather as an efficiency tool in industry but as a supportive mechanism that helps to render the linear of the working process more transparent, reduce the rate of rework, and grant the consistency of the output.

Significantly, general highest score of reduction of defects (Mean = 4.01) also adjusts well with the objectives of creative quality management whereby errors, re-tasks and variability are likely to result in cost escalation and failed design timetable. Malfunctions in creative arts such as graphic design, media production or digital arts usually happen as subjective, yet not as mechanical. The great emphasis of the improvement of the defects therefore serves to indicate that SMEs are increasingly employing the LSS concepts to diminish the distortion of the expectations of the client and

the collective output through offering more accurate briefs, efficient feedback cycle, and the utilization of standardized review points. Next to it, the mean of continuous improvement culture (Mean = 3.91) is high meaning that there is transition to the lean environment of design where the culture is experimental in nature that is supported by the reflective evaluation rather than ad hoc decisions.

The fact that the standard deviations of variables are relatively low reflects that there is homogenous perception of SMEs regarding the usefulness of Lean Six Sigma or not. This consistency suggests that the ideas of LSS as applied as a graphic depiction and its versatility are usually applicable to creative procedures. The fact that the lowest and the highest scores differ also indicates that the maturity of the adoption of LSS among some creative SMEs is still in the stage of exploration, some have already attained the institutionalization of the processes of quality-oriented design. This variation confirms that flexibility of visual models is needed against a rigid procedural model.

The regression analysis also confirms these understandings by giving a statistical confirmation of the effect of the Lean Six Sigma practices on the operations at the quality management range. The Lean Six Sigma practices can be indicated using the R² of 0.42 to show that it contributes a large percentage of the variation in the management of operational quality which is significant in behavioral and management research particularly in the creative environment that require a high level of subjectivity. The beneficial and high-absorbing regression coefficient (B = 0.712) demonstrates that, the more the implementation of LSS practices is applied, the more the quality management results could be achieved. The outcome is observed upon the central premise of the study, which is as follows: Lean Six Sigma, re-conceptualized as being design-enabled and image-driven, enhances and does not impair the performance of creativity.

Theoretically, the study contributes the research in the field of interdisciplinary design management by the rebranding of Lean Six Sigma as a graphic and strategic model which can be employed in conjunction with creative thinking. Traditional criticism goes as far as to say that structured quality models kill innovation, however, the results have shown that structured visual workflow, and standardized and flexible processes can be highly effective in enhancing creative autonomy by removing ambiguity, inefficiency, and repetition of mistakes. This alternative hypothesis being accepted is also another support in that Lean Six Sigma is a key facilitator of creative quality management and not a control mechanism.

In real world application, the discussion highlights critical implications to creative managers and design leaders when it comes to SMEs. Organizations may balance the freedom to create art and functional rigor with the integration of Lean Six Sigma into visual process maps, design dashboard and iterative review systems. This equilibrium particularly applies to the contemporary world of design, which addresses the pressure of the intensified client demands, the decreasing timeframes and worldwide competitive market.

Overall, the discussion demonstrates that the Lean Six Sigma sustainability strategy, coupled with visual design framework, offers a sustainable avenue through which the creative excellence can be achieved at the same time with the quality of operations. The study therefore forms the foundation of future research on industry based adoptions of Lean Six Sigma in making creative disciplines and to develop integrative models that unite design thinking, visual management and quality-driven innovation.

6. OVERALL CONCLUSION

The paper concludes that the introduction of Lean Six Sigma in modern design industries with an assistance of visual design-based solution brings a lot to regulating the quality of creativity without reducing the artistic freedom. The study, in which Lean Six Sigma is rebranded, as design-enabled and visually motivated approach rather than the rigid system of industrial controls contribute to demonstrating its suitability and the applicability of Lean Six Sigma to creative SMEs in dynamic and highly innovative business.

The empirical findings are an excellent testimony to the fact that the Lean Six Sigma practice has a strong and statistically significant impact on the operational quality management. The descriptive statistics indicates that the adoption rate of the structured quality practices by SMEs is persistently high particularly on the aspects such as defect reduction, process standardization and a culture of continuous improvement. The dimensions also help in generating the context in which inefficiency may be realized as a result of the absence of clarity in the workflow, excessive revisions and subjectivity of the quality. The regression result also confirms the indication that Lean Six Sigma practice explains a

considerable share of operation quality management fluctuations, so, the fact that systematic process enhancement is a substantial contributor of quality of designs and organizational performance is confirmed.

In principle, the crafted visual structure model will plug the historic divide between quality management and creativity. The article confirms the fact that the Lean Six Sigma principles and approaches can automatically fit the creative decision-making process through the visual mapping, processes of continuous feedback and open working streams. The structured quality systems instead of confining innovation enable designers to be empowered by lesser uncertainty, enhanced coordination and more attention on value addition of creative work.

They have also significant managerial implications to the SMEs within the design-intensive industries in their study. Lean Six Sigma solutions (based on visual and adaptable models) with some adjustments can be deployed by regular managers of creativity and design executives to achieve the consistency, dependability, and customer satisfaction without compromising originality and experimentation. This model promotes the idea of sustainable development since the model has incorporated the culture of continuous enhancement, which does not erode but boosts the creative expression instead.

The research finds that Lean six sigma, as it is prudently integrated together in a visual design framework becomes an effective facilitator of innovative quality management. It extends the theoretical frame of the Lean Six Sigma and increases the interdisciplinary literature on design management with the proof of its tactical use in the contemporary creative sectors. The findings offer a direction towards future research in an attempt to analyze long-term impacts, industry-specific adaptations, and adoption of digital and Industry 4.0 solutions to make the quality aspect of a design-led organization even more creative.

CONFLICT OF INTERESTS

None.

ACKNOWLEDGMENTS

None.

REFERENCES

Buer, S.-V., Strandhagen, J. W., Semini, M., and Strandhagen, J. O. (2020). The Digitalization of Manufacturing: Investigating the Impact of Production Environment and Company Size. *Journal of Manufacturing Technology Management*, 32(3), 621–645. <https://doi.org/10.1108/JMTM-05-2019-0174>

De la Vega, M., Macias-Velasquez, S., Baez-Lopez, Y., Limon-Romero, J., Tlapa, D., and Chávez-Moreno, E. A. (2023). Modeling Critical Success Factors of Lean Strategy in the Manufacturing Industry. *Systems*, 11(10), Article 490. <https://doi.org/10.3390/systems11100490>

De Sousa Jabbour, A. B. L., Jabbour, C. J. C., Foropon, C., and Godinho Filho, M. (2018). When Titans Meet—Can Industry 4.0 Revolutionise the Environmentally-Sustainable Manufacturing Wave? The Role of Critical Success Factors. *Technological Forecasting and Social Change*, 132, 18–25. <https://doi.org/10.1016/j.techfore.2018.01.017>

Dora, M., and Gellynck, X. (2015). House of Lean for Food Processing SMEs. *Trends in Food Science and Technology*, 44(2), 272–281. <https://doi.org/10.1016/j.tifs.2015.05.013>

Kamble, S. S., Gunasekaran, A., and Sharma, R. (2018). Analysis of the Driving and Dependence Power of Barriers to Adopt Industry 4.0 in Indian Manufacturing Industry. *Computers in Industry*, 101, 107–119. <https://doi.org/10.1016/j.compind.2018.06.004>

Mayr, A., Weigelt, M., Kühl, A., Grimm, S., Erl, A., Potzel, M., and Franke, J. (2018). Lean 4.0—A Conceptual Conjunction of Lean Management and Industry 4.0. *Procedia CIRP*, 72, 622–628. <https://doi.org/10.1016/j.procir.2018.03.142>

Moeuf, A., Lamouri, S., Pellerin, R., Tamayo-Giraldo, S., Tobon-Valencia, E., and Eburdy, R. (2020). Identification of Critical Success Factors, Risks and Opportunities of Industry 4.0 in SMEs. *International Journal of Production Research*, 58(5), 1384–1400. <https://doi.org/10.1080/00207543.2019.1660827>

Pagliosa, M., Tortorella, G., and Ferreira, J. C. E. (2019). Industry 4.0 and Lean Manufacturing: A Systematic Literature Review and Future Research Directions. *Journal of Manufacturing Technology Management*, 32(3), 543–569. <https://doi.org/10.1108/JMTM-12-2018-0446>

Pearce, A., Pons, D., and Neitzert, T. (2018). Implementing Lean—Outcomes from SME Case Studies. *Operations Research Perspectives*, 5, 94–104. <https://doi.org/10.1016/j.orp.2018.03.003>

Pizoń, J., and Gola, A. (2023). The Meaning and Directions of Development of Personalized Production in the Era of Industry 4.0 and Industry 5.0. Retrieved January 12, 2024, from

Raja Santhi, A., and Muthuswamy, P. (2023). Industry 5.0 or Industry 4.0S? Introduction to Industry 4.0 and a Peek into the Prospective Industry 5.0 Technologies. *International Journal of Interactive Design and Manufacturing (IJIDeM)*, 17(3), 947–979. <https://doi.org/10.1007/s12008-023-01055-5>

Rossini, M., Costa, F., Staudacher, A. P., and Tortorella, G. (2019). Industry 4.0 and Lean Production: An Empirical Study. *IFAC-PapersOnLine*, 52(13), 42–47. <https://doi.org/10.1016/j.ifacol.2019.11.310>

Sartal, A., Ozcelik, N., and Rodríguez, M. (2020). Bringing the Circular Economy Closer to Small and Medium Enterprises: Improving Water Circularity without Damaging Plant Productivity. *Journal of Cleaner Production*, 256, 120363. <https://doi.org/10.1016/j.jclepro.2020.120363>

Tissir, S., Cherrafi, A., Chiarini, A., Elfezazi, S., and Bag, S. (2022). Lean Six Sigma and Industry 4.0 Combination: Scoping Review and Perspectives. *Total Quality Management and Business Excellence*, 34(3–4), 261–290. <https://doi.org/10.1080/14783363.2021.1920326>

Tortorella, G., Miorando, R., Caiado, R., Nascimento, D., and Portioli Staudacher, A. (2021). The Mediating Effect of Employees' Involvement on the Relationship Between Industry 4.0 and Operational Performance Improvement. *Total Quality Management and Business Excellence*, 32(1–2), 119–133. <https://doi.org/10.1080/14783363.2019.1684250>

Zhong, R. Y., Xu, X., Klotz, E., and Newman, S. T. (2017). Intelligent Manufacturing in the Context of Industry 4.0: A review. *Engineering*, 3(5), 616–630. <https://doi.org/10.1016/j.eng.2017.05.015>