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ABSTRACT 
Due to the rapid development of deep learning, the new opportunities of computational 
production of human movement have been opened, especially in the field of dance 
choreography. The paper discusses deep learning choreography generators that combine 
movement information, music framework, and time in order to create expressive and 
sensible sequences of dances. Conventional choreography models tend to have a 
handmade regulation or professionalized composition where flexibility and creative 
variety is restricted. Conversely, deep learning methods that are data driven can directly 
learn complex spatio-temporal patterns using big datasets of motion and video. The 
suggested framework uses pose representations, video frames and rhythmic information 
based on music to simulate the inherent relationship between motion and sound. 
Recurrent neural networks as LSTM and GRU models are used to learn long-lasting 
temporal dependencies in dance sequences whereas transformer-based models are used 
to improve global context awareness and sequence coherence. Also, generative 
adversarial networks, diffusion-based networks are explored to achieve motion 
synthesis which provides smooth transitions, stylistic variability and a sense of realistic 
continuity in movement. A modular system architecture is structured in such a way that 
it can allow multimodal inputs, convolutional feature extraction and temporal sequence 
generation. The evaluation of the experimental results is carried out on standard 
choreography and motion datasets and performance is measured by quantitative 
evaluation measures including mean absolute error, Fréchet Inception Distance, and a 
smoothness index specific to the movement evaluation. 
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1. INTRODUCTION 
Dance is a human essential that is an amalgamation of physical activities, rhythm, emotion, and cultural identity. In 

classic and folk traditions as well as in modern and experimental ones, choreography is the systematic language, by 
means of which movement is arranged in space and time. The process of choreography design is a creative endeavor, 
and it is a complicated matter, which involves profound knowledge of body mechanics, musical harmony, aesthetic 
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values and expression. Conventionally, the art of choreography used to be based on experience and intuition of human 
choreographers, who routinely create, develop and pass on movement patterns through practice and performance. 
Though such humanistic approach is still the main focus of dance, it is time consuming, personal and hard to scale and 
analyse in a systematic way. As digital media and motion capture technologies become more and more accessible, and 
large repositories of dance videos emerge, computational techniques on modelling and generating dance movements 
have become of high interest. Initial computational choreography systems were mostly rule-based, representing 
predefined movement grammars, symbolic representations or biomechanical restrictions Pleshakova et al. (2024). 
Though these systems offered formalized portrayals of dance, there was no flexibility and they were not able to embrace 
the depth of variability and fluidity of time and style of human movement. These restrictions inspired the transition to 
data-driven approaches that were able to learn choreography patterns straight out of observed performances. Deep 
learning has become an effective paradigm of modelling high-dimensional, sequential, and multimodal data, so it is 
especially appropriate to choreography generation Hou (2024). Human motion may be modelled either as time-varying 
sequences of pose, skeletal joint paths or visual attributes derived by video frames and all these shows strong interaction 
between time and nonlinear multi-directional interactions. 

Recurrent deep neural networks, in particular, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) 
models have been shown to be effective at modelling long-range temporal variations in sequential data. More recently, 
architectures based on transformers have gone further to support sequence modelling with self-attention mechanisms 
to learn global interactions in a sequence of motion and enhance coherence and long-term structure of generated 
choreography. Simultaneously, generative modelling types, including Generative Adversarial Networks (GANs) and 
diffusion models, have demonstrated impressive performance in synthetic data generation of realistic and variety in the 
fields of visual, audio, and motion data Hong (2024). These models in combination with choreography generation allow 
creating continuous and smooth movements that maintain a style of consistency and physical reasonableness. In 
particular, diffusion-based methods provide better stability and better control over motion transitions, dealing with the 
typical problems of jitter, discontinuities, unnatural poses, and other problems in previous generative systems. The other 
dimension of choreography generation that is crucially important is the incorporation of music and rhythm. Dance is 
closely connected with musical framework, speed and mood. The current deep learning systems permit multimodal 
learning, i.e. musical instruments like beats, tempo, spectral patterns can be synchronized with motion patterns to 
produce dance sequences that are rhythmically aligned and expressively significant Wu et al. (2023). Such multimodal 
approach creates new opportunities to adaptive choreography which is dynamically responsive to the musical styles and 
performance contexts. The results of research in the creation of deep learning models that generate choreography have 
serious implications outside the artistic sphere. 

 
2. LITERATURE REVIEW 
2.1. TRADITIONAL AND RULE-BASED CHOREOGRAPHY SYSTEMS 

The first computational methods of choreography generation were mostly rule-based, and tried to formalise dance 
by means of fixed structures and symbolic representations. These systems were inspired by the known systems of dance 
notation like Labanotation and Benesh Movement Notation, which represent body positions, direction, and timing as 
symbolic rules Croitoru et al. (2023). Translation of such notations into computational grammars was a goal of 
researchers to capture the choreographic knowledge in a form that can be recognized and interpreted. Choreography 
engines with rules were commonly based on manually constructed libraries of movement, biomechanical restrictions 
and transition rules to produce practicable dance sequences Tay et al. (2023). The physical plausibility and style 
consistency within a small domain was achieved by this method, and it was applicable in educational demonstrations 
and restricted performance simulations. Nevertheless, the conventional systems were not very flexible and creative. The 
choreography produced was very reliant on previous assumptions and was not very diverse as rules were manually 
designed by experts Sun et al. (2023). Such systems could not generalize across styles of dances, musical variations and 
performer specific nuances. Besides, expressive attributes of emotion, improvisation, and light differences in time could 
not be achieved through rule-based models, which form the core of human dance Copet et al. (2023). 
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2.2. MOTION CAPTURE AND MOVEMENT DATASETS FOR DANCE ANALYSIS  

The development of the choreography modeling has been strongly associated with the existence of the motion 
capture and movement datasets that give quantitative depiction of the human dance. Motion capture (MoCap) systems 
capture the exact 3D joint movements with the use of optical markers, inertial sensors, or depth cameras and provide a 
more detailed study of body dynamics. Initial data used to track human movement in general ways like walking or 
running, but more recently there has been an increase in the types of dances tracked, including ballet, contemporary, 
hip-hop, folk and social dances Chen et al. (2021). These data sets would measure the changes in time, stylistic features, 
and artist specific features that are vital in the study of choreography. Besides MoCap data, video-based large dance 
datasets have become popular (because of its availability and diversification of cultures). Skeletal information can now 
be remotely estimated in RGB videos by pose estimation algorithms, and it is now possible to create datasets without 
any special capture equipment Zeng (2025). Nevertheless, the problem of dataset preparation, such as noise in pose 
extraction, missing joints, occlosures, and inconsistency across different recording conditions persists Zhang and Zhang 
(2022).  

 
2.3. DEEP LEARNING IN GENERATIVE ARTS AND PERFORMANCE MODELING  

Deep learning has played an important role in generative arts and performance modeling where machines are able 
to learn creative patterns, which are generally complex, based on data. AI in visual arts applications include style transfer, 
image generation, and stylization, whereas in music, recurrent networks, transformers, and other models have shown 
results in composition and improvisation Chen et al. (2024). Such improvements have naturally been applied to the 
performance arts where movement and expression is dealt with as a high-dimensional and sequential signal. The first 
deep learning models to be used in motion generation were recurrent neural networks, and specifically, LSTM and GRU, 
which were very effective at representing temporal relationships in a sequence of dances and gestures. Transformer-
based architectures have been becoming increasingly popular in recent years as they can represent long-range 
dependencies with self-attention models Lauriola et al. (2022). Table 1 is a summary of deep learning methods in 
automated choreography generation. Such models have demonstrated enhanced coherence and the global structure in 
the generated performance as compared to the old-fashioned recurrent methods. The Generative Adversarial networks 
also helped in bringing in the paradigms of adversarial training that promote realism and authentic style in the generated 
movements.  
Table 1 

Table 1 Related Work on Deep Learning Models for Choreography Generation 

Study Focus Data Type Used Key Contribution Limitations 

Rule-based Dance Generation Symbolic poses Formalized choreographic rules Low creativity, poor scalability 

MoCap-Based Dance Synthesis MoCap skeletons Early probabilistic motion modeling Style rigidity 

RNN Dance Motion Modeling MoCap Captured temporal dependencies Long-sequence drift 

Music-to-Dance Mapping Audio + MoCap Beat-synchronized motion Limited diversity 

Video-Based Dance Learning RGB video Pose learning from videos Pose noise 

GAN-Based Dance Generation Lund et 
al. (2023).  

Pose sequences Improved realism Training instability 

Style-Conditioned Dance MoCap Style-aware choreography Mode collapse 

Transformer for Motion MoCap Global sequence coherence High computation 

Cross-Modal Dance Synthesis Audio + Pose Strong music–motion coupling Data intensive 

Diffusion Motion Models Pose Smooth motion transitions Slow inference 

Dance Style Transfer Pose + Music Style transfer across dances Style leakage 

Multimodal Dance Generation Video + Audio Rich multimodal fusion Complex training 

Real-Time Dance Avatars Pose streams Interactive performance Limited realism 
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Hybrid Transformer–Diffusion Pose + MIDI High realism & smoothness Computational cost 

 
3.  METHODOLOGY 
3.1. DATASET PREPARATION (POSE DATA, VIDEO FRAMES, MIDI BEATS) 

The choreography generation methodology starts with an extensive dataset preparation procedure that receives 
various data modalities necessary in choreography generation. Pose data are the fundamental representation of human 
motion, which come in either by motion capture system or pose estimation on videos of dances. These data are time-
indexed joint coordinates giving the kinematic structure of the performer. Raw video frames are simultaneously 
captured to maintain visual context, space relations and other style clues like body positioning, arm length and body 
posture. Video data also make it possible to check the accuracy of poses and extend this knowledge to appearance-based 
features in the future. MIDI beat information is mined out of other music tracks to integrate music structure. MIDI data 
give direct indications of tempo, beat positions, rhythm and note intensity, enabling them to be programmed with 
movement and music in perfect sync. In case no MIDI files are found, audio signals are manipulated to recognize beats 
and rhythmic patterns and transmitted into MIDI-like time indicators. The sequence of dances is divided into 
synchronized windows at the temporal coordinates of pose path, video frame, and beat marking. There is also metadata 
like style of dance, range of tempo, and identity of the performer to facilitate conditional generation and control of style. 
This multi-mod data preparation makes sure that the learning models not only view the physical dynamics of motion but 
also the rhythmic alignment in movement to music creating a strong basis of expressive choreography synthesis. 

 
3.2. PREPROCESSING: NORMALIZATION, POSE SKELETON EXTRACTION, SEQUENCE 

ALIGNMENT  
Preprocessing is important in converting the raw multimodal data to structured inputs that can be processed using 

the deep learning models. Pose skeleton pose estimation Pose skeleton pose estimation is the stage of transforming raw 
motion capture signals or approximated joint positions into conventional skeleton models. Hierarchies are computed 
jointly based on anatomical constraints, such that all the samples share similar connectivity. Missing/Noisy background 
on the values of the joints, which is normal in the process of video-based pose estimation is addressed with interpolation 
and temporal smoothing, which minimise jitter and discontinuities. It is then normalized in order to enhance the model 
stability and generalization. The process of spatial normalization is with respect to a reference joint, (say the hip or torso) 
and normalizes them to compensate performer height variation and variation in camera distance. Temporal 
normalization brings about the same frame rate in sequences by resampling the motion data to the fixed number of 
frames/s. The beat sequences in music are also scaled to a usual tempo grid allowing it to be regularly associated with 
motion frames. Sequence alignment involves the combination of movement and music in time-synchronized streams. 

 
3.3. MODEL DESIGN: RECURRENT (LSTM, GRU) AND TRANSFORMER-BASED NETWORKS  

The model design is aimed at the complex temporal dependencies and multimodal interaction of the choreography 
of a dance. The ability to capture contextual information over a long duration of time means that recurrent neural 
networks, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks are used as a baseline 
sequence model. These processing models encode and decode frame by frame, and for such processes to be learned, 
temporal relationships between one movement and the next, one beat of the music and the next, and so on, are required.  

The explicit memory cells and gating mechanisms allow LSTM networks to be well modelled to work with the long 
dance phrases with anything resembling the performance with their more efficient computation mechanism that GRUs 
provide. Figure 1 illustrates recurrent and transformer architecture which allows choreography generation. 
Transformer-based architectures are added to the framework in order to address the weaknesses of recurrent models 
in working with very long sequences. To learn global dependencies across the motion sequences of a body part, 
transformers employ self-attention mechanisms to mimic the recurrent motifs, structural symmetry and long-range 
coordination of body parts. Multimodal embeddings are pose features that were enriched with beat and tempo 
information and it is jointly processed using stacked attention layers. Positional encoding is used in order to maintain 
time in the sequence. 
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Figure 1 

 
Figure 1 Architecture of Recurrent and Transformer-Based Models for Choreography Generation 

 
4. SYSTEM ARCHITECTURE 
4.1. INPUT MODULE: MUSIC, RHYTHM, AND MOVEMENT DATA STREAMS 

The input module is the cornerstone of the choreography generation system as it combines various data sources 
that constitute auditory and physical features of dancing. The input of music can be in the form of raw audio signals or 
symbolic input in the form of MIDI files which are coded with tempo, beat placement, and rhythmic strength. Based on 
these inputs, spectral energy, tempo curves and beat onsets are obtained as low-level features that represent the musical 
structure of the movement dynamics. Streams of rhythm are focused on the time and thus generated choreography is 
synchronized to musical accents and phrasing. Movement data streams are pose-based skeletal representations, which 
are generated as a result of motion capture or video-based pose estimation. The positions of joints, angles and relative 
limb orientations are represented in each frame and create a time-ordered record that captures human motion. Music 
and movement streams are synchronized in time with a common timestamp structure in order to facilitate multimodal 
learning. Conditioning variables may include optional metadata (e.g. dance style, emotional tone, performance 
constraints, etc.) to allow choreography generation to be controlled. 

 
4.2. FEATURE EXTRACTION USING CNNS AND TEMPORAL ENCODERS  

The layer of feature extraction converts raw multimodal inputs into informative representations, which are small 
and can be used in sequence modeling. Convolutional Neural Networks (CNNs) are used to run visual data, such as video 
frames or heatmap of the position of humans in the space. These networks fly-capture spatial relationships including 
body posture, limb positioning and inter-joint association which are vital in comprehending movement organization. In 
case of pose-only input, skeletal connectivity and joint correlations can be effective with the help of graph-based or 1D 
convolutional layers. The musical features are analyzed using special encoders which derive rhythmic and harmonic 
patterns out of audio spectrograms or MIDI representations. These encoders maintain time continuity as well as 
dimensionality reduction that facilitates the effective fusion of multimodal information. The mechanisms of feature 
fusion integrate a representation of encoded music and movement by concatenation, by attention-based weighting or 
cross-modal transformers. 

 
4.3. SEQUENCE GENERATION VIA LSTM/TRANSFORMER LAYERS  

The sequence generation component aims at generating timely coherent and expressive choreography based on 
latent feature embeddings. The recurrent architectures that are applied to capture frame to frame dependencies and 
gradual change in movement are recurrent architectures like Long Short-Term Memory (LSTM) networks. LSTMs can 
learn the dynamics of contemporary poses during motion and rhythmic patterns and predict the future progression of 
the dance, generating an entirely continuous sequence of posts, by remembering internal states of memory. Figure 2 
depicts the LSTM Transformer architecture in sequence generation in choreography synthesis. Information flow is 
controlled by gated mechanisms by decreasing sudden changes and providing biomechanical plausibility. Addition of 
transformer-based layers is done to improve global sequence modelling.  
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Figure 2 

 
Figure 2 LSTM–Transformer–Based Sequence Generation Architecture for Choreography Synthesis 

 
Transformers can compare the relationships between all the time steps simultaneously by means of self-attention 

and thus discover the long-range dependencies, repetitive motifs, and structural patterns in choreography. Such an 
ability is specifically relevant to the creation of long dance patterns and their alignment with the same theme and musical 
orientation. The positional encodings maintain the time series, whereas the multi-head attention enables the model to 
pay attention to various elements of motion and rhythm at the same time. 

 
5. APPLICATIONS AND IMPLICATIONS 
5.1. AI-ASSISTED DANCE EDUCATION AND TRAINING SYSTEMS 

Deep learning generated choreography can be used to revolutionize dance education and training through the 
provision of intelligent, adaptable and accessible learning devices. Systems based on AI have the potential to produce 
personalized practice routines, depending on the skill set of the learner, style of dance, and dance tempo, therefore, 
allowing them to engage in individual training plans. Students have visual references of posture, timing and transitioning 
of movements by creating skeletal animation with images or virtual avatars. Repetitive practice may also be aided 
through such systems that provide variations of the same sequence allowing learners to become flexible, to memorize 
and to range. AI-assisted tools are helpful to instructors in terms of automatic content generation and analytical feedback. 
Teaching content can be generated choreography where rhythm alignment is demonstrated, spatial patterns, or a 
difference in style between the different forms. AI systems can be used together with motion capture or camera-guided 
tracking so that the movement of the student can be compared to generated or expert reference sequences and offered 
quantitative feedback regarding truthfulness, smoothness, and time. This objective measure is a supplement of the 
conventional qualitative training and assists in identifying points of improvement.  

 
5.2. VIRTUAL PERFORMANCE DESIGN AND STAGE SIMULATION  

The application of AI-created choreography is crucial to the design of virtual performance and simulation of the 
stage, especially with regard to digital and hybrid performance. Deep learning models allow generating dynamic dance 
sequences the visualization of which can be performed in the form of a virtual avatar, motion graphics or holograph 
projection. These functions assist choreographers and stage designers to explore movement patterns, spatial structures 
and timing without necessarily having to physically practice them. Tests in virtual stage simulation enable designers to 
experiment with choreographies in varying lighting and camera angles and stage layouts to make planning more efficient 
and exploration of creative possibilities. Live performances Artificial intelligence can be used to generate choreography 
in real-time, with a musical backdrop and interactive systems to make adaptable performances that change tempo, 
respond to user input, or environmental changes. This brings new prospects of participatory and immersive dance 
experiences. In computer-generated performances, including online performances and metaverse events, AI 
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choreography allows the production of the visually interesting one on a scale, without the need to involve people in the 
large-scale human motion capture sessions.  

 
5.3. CROSS-DOMAIN USE IN ANIMATION, FILM, AND VR ENVIRONMENTS  

In addition to dance-related uses, choreography generation using deep learning has wide application in the fields of 
animation, film, and virtual reality (VR). The production of lifelike and expressive movement of characters is a constant 
challenge in animation and development of games. Choreography models based on AI offer automated motion 
generation, which eliminates the use of manual keyframing, or the costly motion capture, with visual realism at any rate 
of production speed. Dance sequences generated can be scaled to alternate character models, styles, and narrative 
settings and help to create content at scale. Artificial intelligence-generated choreography may be useful in film and 
digital media, helping pre-visualization in movies and animation films, where the director and animators can experiment 
with the storytelling through movements prior to full production. Sophisticated crowd scenes, background dancers, or 
staged performances can be created at high efficiency to increase the flexibility of creativity. In VR and augmented reality 
(AR), AI choreography helps provide immersion through the generation of real-life-like avatars that behave in a natural 
manner to the music and the user’s actions. It will be useful especially on virtual concerts, interactive exhibitions and 
social VR platforms. 

 
6. EXPERIMENTAL SETUP AND RESULTS 
6.1. DATASET DESCRIPTION AND SPLIT RATIOS 

Experimental assessment is performed on a curated set of choreography videos in the shape of synchronized dance 
videos, pose-based skeletal sequences and related music tracks with beat annotations. It has a variety of dance styles, 
tempos, and variations of the performers to achieve diversity and generalization. The pose sequences are separated at a 
fixed frame rate and musical features are synchronized with the movement data. To train and evaluate the models, the 
dataset is split by standard split strategy 70 percent of the sequences will be used to create the training set, 15 percent 
to create the validation set, and 15 percent to create the testing set. Such a divide guarantees enough data to learn the 
model and at the same time provides an ability to evaluate the performance without any bias. All the subsets maintain 
cross-style representation to prevent any distributional bias. 
Table 2 
Table 2 Dataset Composition and Split Ratios 

Dance Style Total Sequences Avg. Duration (s) Training (70%) Validation (15%) 

Ballet 420 18.5 294 63 

Contemporary 510 16.2 357 77 

Hip-Hop 380 14.8 266 57 

Folk/Traditional 290 20.1 203 44 

Jazz 310 15.6 217 47 

 
Table 2 shows the structure of choreography data and its distribution on training and validation subsets of the 

various styles of dances. The collection of data shows equal stylistic diversity including classical, contemporary, urban, 
and traditional styles of dance. The total generated sequence of dance in each style is distributed as indicated in Figure 
3. Contemporary dance adds the most sequences (510) as it has a broad stylistic range and can be studied to learn how 
to move in a flexible manner.  
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Figure 3 

 
Figure 3 Distribution of Total Dance Sequences Across Styles 

 
Ballet and jazz offer orderly movement vocabularies with moderate number of sequences which facilitates the 

modelling of controlled and rhythmically accurate choreography. The Hip-hop sequences highlight high tempo and 
change-of-direction and can therefore be useful in assessing the temporal sensitivity of deep learning models. Although 
folk and traditional dances are the least numerous, they have the longest average (20.1 seconds), and they embrace 
extensive rhythmic cycles and culturally rich movement patterns. The bar visualization of the metrics of dance style 
datasets is compared as seen in Figure 4.  

Figure 4 

 
Figure 4 Comparative Bar Visualization of Dance Style Metrics for Dataset Preparation 

 
The 70% training/15 percent validation split is constant across all styles so that there is consistency in exposure to 

learning and the performance can also be tuned on representative validation data. It offers a strong generalization 
capability by avoiding style-specific bias and offers a justifiable comparative appraisal of choreography generation 
models in various spheres of movement. 

 
6.2. QUANTITATIVE EVALUATION METRICS (MAE, FID, SMOOTHNESS INDEX)  

Quantitative measures of model performance are applied to measure the accuracy, realism, and motion continuity. 
Mean Absolute Error (MAE) is used to measure the mean error between generated and ground-truth joint positions, 
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which is a measure of the accuracy of pose prediction. In motion features, Fréchet Inception Distance (FID) is used to 
measure the similarity of the distributions of real and generated dance sequences, which is perceptual realism and 
diversity. Temporal coherence is specifically measured with the help of a Smoothness Index, which is calculated using 
frame-to-frame change in joint velocities and accelerations, and punishing jitter and sudden transitions. The decreasing 
values of MAE and FID with increasing values of smoothness suggest better choreography generation quality in balance 
between accuracy, realism, and continuity of expressiveness. 
Table 3 

Table 3 Quantitative Performance Comparison of Choreography Generation Models 

Model Type MAE (↓) FID (↓) Smoothness Index (%) Rhythm Alignment (%) 

LSTM 0.084 42.6 86.3 82.1 

GRU 0.079 39.8 87.5 83.6 

Transformer 0.062 31.4 91.2 89.7 

LSTM + GAN 0.068 34.9 92.4 88.1 

 
Table 3 provides a comparison of the performance of various deep learning models in choreography generation 

based on the metrics of accuracy, realism, smoothness and rhythm alignment. The most basic LSTM model has the 
highest values of MAE and FID, which makes it less accurate in poses and less realistic, but still with a good smoothness 
thanks to the sequential memory structure. Figure 5 presents the comparison of the MAE of sequential and hybrid 
prediction models. 

Figure 5 

 
Figure 5 MAE Comparison Across Sequential and Hybrid Prediction Models 

 
GRU model has slight improvements over LSTM in all metrics, which is a valid indication of its more efficient gating 

process and better response to the time dependencies. Figure 6 displays the comparison of FID, smoothness, rhythm 
alignment of architectures using area plot. Transformer based models show a significant performance improvement with 
a much lower MAE and FID value and an increased score of Smoothness Index and Rhythm Alignment.  

https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh


Deep Learning Models for Choreography Generation 
 

ShodhKosh: Journal of Visual and Performing Arts 534 
 

Figure 6 

 
Figure 6 Area Plot of FID, Smoothness, and Rhythm Alignment Across Sequence Modelling Architectures 

 
This brings out the success of self-attention in the attendance of long-range dependencies and international 

choreographic framework. The hybrid LSTM + GAN model goes further to increase the quality of perceptual, as indicated 
by the improvement of smoothness and rhythm alignment, because of the adversarial training, which promotes realistic 
motion transition. All in all, the findings suggest that there is a broad evolution of recurrent to attention-based and hybrid 
generative architectures, and more advanced models are able to generate a more fluid, accurate, and musically 
synchronized sequence of choreography. 

 
7. CONCLUSION  

This paper has provided extensive research on the deep learning models in choreography generation and the ways 
the model can revolutionize the process of creating, analyzing, and sharing dance. The proposed framework shows how 
complicated connections between movement and music can be effectively modeled with the help of the current 
techniques of artificial intelligence by employing multimodal data sources, including pose-based skeletal 
representations, video frames, and musical rhythm cues. With the shift towards the data-driven deep learning models of 
the dance sequence creation, the problem of traditional rule-based choreography systems is replaced with the idea of 
flexibility, colouring stylistic diversity, and expressiveness in the generated dance sequences. Recurrent architectures, 
such as LSTM models and GRU models, were found to be effective to express local temporal continuity and motion 
transition, whereas transformer-based networks to be more effective in expressing global sequence coherence and long-
range dependencies. The use of modern generative methods also increased the realism and the fluidity, and it solved 
most of the popular issues like motion stuttering and unnatural transitions of poses. Quantitative measures (MAE, FID, 
Smoothness Index) of experimental evaluation showed that models based on deep learning could produce choreography, 
which was rhythmically and visually convincing across a wide range of dance styles. In addition to the technical 
performance, the consequences of this study are applicable in various fields of application. AI-assisted choreography 
systems can be used in the field of dance education and training to facilitate personalized learning, objective feedback, 
and remote training. Like in performance design, the virtual stage simulation and adaptive choreography introduces 
novel creative possibilities.   
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