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ABSTRACT

Due to the rapid development of deep learning, the new opportunities of computational
production of human movement have been opened, especially in the field of dance
choreography. The paper discusses deep learning choreography generators that combine
movement information, music framework, and time in order to create expressive and

Check for
updates

Received 15 May 2025

Accepted 19 August 2025
Published 28 December 2025

Corresponding Author
Afroj Alam,

DOI

Funding: This research received no
specific grant from any funding agency in
the public, commercial, or not-for-profit
sectors.

Copyright: © 2025 The Author(s).
This work is licensed under a

With the license CC-BY, authors retain
the copyright, allowing anyone to

download, reuse, re-print, modify,
distribute, and/or  copy  their
contribution. The work must be

properly attributed to its author.

sensible sequences of dances. Conventional choreography models tend to have a
handmade regulation or professionalized composition where flexibility and creative
variety is restricted. Conversely, deep learning methods that are data driven can directly
learn complex spatio-temporal patterns using big datasets of motion and video. The
suggested framework uses pose representations, video frames and rhythmic information
based on music to simulate the inherent relationship between motion and sound.
Recurrent neural networks as LSTM and GRU models are used to learn long-lasting
temporal dependencies in dance sequences whereas transformer-based models are used
to improve global context awareness and sequence coherence. Also, generative
adversarial networks, diffusion-based networks are explored to achieve motion
synthesis which provides smooth transitions, stylistic variability and a sense of realistic
continuity in movement. A modular system architecture is structured in such a way that
it can allow multimodal inputs, convolutional feature extraction and temporal sequence
generation. The evaluation of the experimental results is carried out on standard
choreography and motion datasets and performance is measured by quantitative
evaluation measures including mean absolute error, Fréchet Inception Distance, and a
smoothness index specific to the movement evaluation.

Keywords: Deep Learning, Choreography Generation, Motion Synthesis, Lstm and
Transformers, Generative Adversarial Networks, Diffusion Models

1. INTRODUCTION

Dance is a human essential that is an amalgamation of physical activities, rhythm, emotion, and cultural identity. In
classic and folk traditions as well as in modern and experimental ones, choreography is the systematic language, by
means of which movement is arranged in space and time. The process of choreography design is a creative endeavor,
and it is a complicated matter, which involves profound knowledge of body mechanics, musical harmony, aesthetic
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Deep Learning Models for Choreography Generation

values and expression. Conventionally, the art of choreography used to be based on experience and intuition of human
choreographers, who routinely create, develop and pass on movement patterns through practice and performance.
Though such humanistic approach is still the main focus of dance, it is time consuming, personal and hard to scale and
analyse in a systematic way. As digital media and motion capture technologies become more and more accessible, and
large repositories of dance videos emerge, computational techniques on modelling and generating dance movements
have become of high interest. Initial computational choreography systems were mostly rule-based, representing
predefined movement grammars, symbolic representations or biomechanical restrictions Pleshakova et al. (2024).
Though these systems offered formalized portrayals of dance, there was no flexibility and they were not able to embrace
the depth of variability and fluidity of time and style of human movement. These restrictions inspired the transition to
data-driven approaches that were able to learn choreography patterns straight out of observed performances. Deep
learning has become an effective paradigm of modelling high-dimensional, sequential, and multimodal data, so it is
especially appropriate to choreography generation Hou (2024). Human motion may be modelled either as time-varying
sequences of pose, skeletal joint paths or visual attributes derived by video frames and all these shows strong interaction
between time and nonlinear multi-directional interactions.

Recurrent deep neural networks, in particular, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
models have been shown to be effective at modelling long-range temporal variations in sequential data. More recently,
architectures based on transformers have gone further to support sequence modelling with self-attention mechanisms
to learn global interactions in a sequence of motion and enhance coherence and long-term structure of generated
choreography. Simultaneously, generative modelling types, including Generative Adversarial Networks (GANs) and
diffusion models, have demonstrated impressive performance in synthetic data generation of realistic and variety in the
fields of visual, audio, and motion data Hong (2024). These models in combination with choreography generation allow
creating continuous and smooth movements that maintain a style of consistency and physical reasonableness. In
particular, diffusion-based methods provide better stability and better control over motion transitions, dealing with the
typical problems of jitter, discontinuities, unnatural poses, and other problems in previous generative systems. The other
dimension of choreography generation that is crucially important is the incorporation of music and rhythm. Dance is
closely connected with musical framework, speed and mood. The current deep learning systems permit multimodal
learning, i.e. musical instruments like beats, tempo, spectral patterns can be synchronized with motion patterns to
produce dance sequences that are rhythmically aligned and expressively significant Wu et al. (2023). Such multimodal
approach creates new opportunities to adaptive choreography which is dynamically responsive to the musical styles and
performance contexts. The results of research in the creation of deep learning models that generate choreography have
serious implications outside the artistic sphere.

2. LITERATURE REVIEW
2.1. TRADITIONAL AND RULE-BASED CHOREOGRAPHY SYSTEMS

The first computational methods of choreography generation were mostly rule-based, and tried to formalise dance
by means of fixed structures and symbolic representations. These systems were inspired by the known systems of dance
notation like Labanotation and Benesh Movement Notation, which represent body positions, direction, and timing as
symbolic rules Croitoru et al. (2023). Translation of such notations into computational grammars was a goal of
researchers to capture the choreographic knowledge in a form that can be recognized and interpreted. Choreography
engines with rules were commonly based on manually constructed libraries of movement, biomechanical restrictions
and transition rules to produce practicable dance sequences Tay et al. (2023). The physical plausibility and style
consistency within a small domain was achieved by this method, and it was applicable in educational demonstrations
and restricted performance simulations. Nevertheless, the conventional systems were not very flexible and creative. The
choreography produced was very reliant on previous assumptions and was not very diverse as rules were manually
designed by experts Sun et al. (2023). Such systems could not generalize across styles of dances, musical variations and
performer specific nuances. Besides, expressive attributes of emotion, improvisation, and light differences in time could
not be achieved through rule-based models, which form the core of human dance Copet etal. (2023).

ShodhKosh: Journal of Visual and Performing Arts 526


https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Afroj Alam, Sadhana Sargam, Jyoti Rani, Pavas Saini, Amol Bhilare, and S. Balakrishnan

2.2. MOTION CAPTURE AND MOVEMENT DATASETS FOR DANCE ANALYSIS

The development of the choreography modeling has been strongly associated with the existence of the motion
capture and movement datasets that give quantitative depiction of the human dance. Motion capture (MoCap) systems
capture the exact 3D joint movements with the use of optical markers, inertial sensors, or depth cameras and provide a
more detailed study of body dynamics. Initial data used to track human movement in general ways like walking or
running, but more recently there has been an increase in the types of dances tracked, including ballet, contemporary,
hip-hop, folk and social dances . These data sets would measure the changes in time, stylistic features,
and artist specific features that are vital in the study of choreography. Besides MoCap data, video-based large dance
datasets have become popular (because of its availability and diversification of cultures). Skeletal information can now
be remotely estimated in RGB videos by pose estimation algorithms, and it is now possible to create datasets without
any special capture equipment . Nevertheless, the problem of dataset preparation, such as noise in pose
extraction, missing joints, occlosures, and inconsistency across different recording conditions persists

2.3. DEEP LEARNING IN GENERATIVE ARTS AND PERFORMANCE MODELING

Deep learning has played an important role in generative arts and performance modeling where machines are able
to learn creative patterns, which are generally complex, based on data. Al in visual arts applications include style transfer,
image generation, and stylization, whereas in music, recurrent networks, transformers, and other models have shown
results in composition and improvisation . Such improvements have naturally been applied to the
performance arts where movement and expression is dealt with as a high-dimensional and sequential signal. The first
deep learning models to be used in motion generation were recurrent neural networks, and specifically, LSTM and GRU,
which were very effective at representing temporal relationships in a sequence of dances and gestures. Transformer-
based architectures have been becoming increasingly popular in recent years as they can represent long-range
dependencies with self-attention models . is a summary of deep learning methods in
automated choreography generation. Such models have demonstrated enhanced coherence and the global structure in
the generated performance as compared to the old-fashioned recurrent methods. The Generative Adversarial networks
also helped in bringing in the paradigms of adversarial training that promote realism and authentic style in the generated
movements.

Table 1
Table 1 Related Work on Deep Learning Models for Choreography Generation

Study Focus Data Type Used Key Contribution Limitations
Rule-based Dance Generation Symbolic poses Formalized choreographic rules Low creativity, poor scalability
MoCap-Based Dance Synthesis MoCap skeletons Early probabilistic motion modeling Style rigidity
RNN Dance Motion Modeling MoCap Captured temporal dependencies Long-sequence drift
Music-to-Dance Mapping Audio + MoCap Beat-synchronized motion Limited diversity
Video-Based Dance Learning RGB video Pose learning from videos Pose noise
GAN-Based Dance Generation Pose sequences Improved realism Training instability
Style-Conditioned Dance MoCap Style-aware choreography Mode collapse
Transformer for Motion MoCap Global sequence coherence High computation
Cross-Modal Dance Synthesis Audio + Pose Strong music-motion coupling Data intensive
Diffusion Motion Models Pose Smooth motion transitions Slow inference
Dance Style Transfer Pose + Music Style transfer across dances Style leakage
Multimodal Dance Generation Video + Audio Rich multimodal fusion Complex training
Real-Time Dance Avatars Pose streams Interactive performance Limited realism
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Hybrid Transformer-Diffusion Pose + MIDI High realism & smoothness Computational cost

3. METHODOLOGY
3.1. DATASET PREPARATION (POSE DATA, VIDEO FRAMES, MIDI BEATS)

The choreography generation methodology starts with an extensive dataset preparation procedure that receives
various data modalities necessary in choreography generation. Pose data are the fundamental representation of human
motion, which come in either by motion capture system or pose estimation on videos of dances. These data are time-
indexed joint coordinates giving the kinematic structure of the performer. Raw video frames are simultaneously
captured to maintain visual context, space relations and other style clues like body positioning, arm length and body
posture. Video data also make it possible to check the accuracy of poses and extend this knowledge to appearance-based
features in the future. MIDI beat information is mined out of other music tracks to integrate music structure. MIDI data
give direct indications of tempo, beat positions, rhythm and note intensity, enabling them to be programmed with
movement and music in perfect sync. In case no MIDI files are found, audio signals are manipulated to recognize beats
and rhythmic patterns and transmitted into MIDI-like time indicators. The sequence of dances is divided into
synchronized windows at the temporal coordinates of pose path, video frame, and beat marking. There is also metadata
like style of dance, range of tempo, and identity of the performer to facilitate conditional generation and control of style.
This multi-mod data preparation makes sure that the learning models not only view the physical dynamics of motion but
also the rhythmic alignment in movement to music creating a strong basis of expressive choreography synthesis.

3.2. PREPROCESSING: NORMALIZATION, POSE SKELETON EXTRACTION, SEQUENCE
ALIGNMENT

Preprocessing is important in converting the raw multimodal data to structured inputs that can be processed using
the deep learning models. Pose skeleton pose estimation Pose skeleton pose estimation is the stage of transforming raw
motion capture signals or approximated joint positions into conventional skeleton models. Hierarchies are computed
jointly based on anatomical constraints, such that all the samples share similar connectivity. Missing/Noisy background
on the values of the joints, which is normal in the process of video-based pose estimation is addressed with interpolation
and temporal smoothing, which minimise jitter and discontinuities. It is then normalized in order to enhance the model
stability and generalization. The process of spatial normalization is with respect to a reference joint, (say the hip or torso)
and normalizes them to compensate performer height variation and variation in camera distance. Temporal
normalization brings about the same frame rate in sequences by resampling the motion data to the fixed number of
frames/s. The beat sequences in music are also scaled to a usual tempo grid allowing it to be regularly associated with
motion frames. Sequence alignment involves the combination of movement and music in time-synchronized streams.

3.3. MODEL DESIGN: RECURRENT (LSTM, GRU) AND TRANSFORMER-BASED NETWORKS

The model design is aimed at the complex temporal dependencies and multimodal interaction of the choreography
of a dance. The ability to capture contextual information over a long duration of time means that recurrent neural
networks, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks are used as a baseline
sequence model. These processing models encode and decode frame by frame, and for such processes to be learned,
temporal relationships between one movement and the next, one beat of the music and the next, and so on, are required.

The explicit memory cells and gating mechanisms allow LSTM networks to be well modelled to work with the long
dance phrases with anything resembling the performance with their more efficient computation mechanism that GRUs
provide. Figure 1 illustrates recurrent and transformer architecture which allows choreography generation.
Transformer-based architectures are added to the framework in order to address the weaknesses of recurrent models
in working with very long sequences. To learn global dependencies across the motion sequences of a body part,
transformers employ self-attention mechanisms to mimic the recurrent motifs, structural symmetry and long-range
coordination of body parts. Multimodal embeddings are pose features that were enriched with beat and tempo
information and it is jointly processed using stacked attention layers. Positional encoding is used in order to maintain
time in the sequence.
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Figure 1
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Figure 1 Architecture of Recurrent and Transformer-Based Models for Choreography Generation

4. SYSTEM ARCHITECTURE
4.1. INPUT MODULE: MUSIC, RHYTHM, AND MOVEMENT DATA STREAMS

The input module is the cornerstone of the choreography generation system as it combines various data sources
that constitute auditory and physical features of dancing. The input of music can be in the form of raw audio signals or
symbolic input in the form of MIDI files which are coded with tempo, beat placement, and rhythmic strength. Based on
these inputs, spectral energy, tempo curves and beat onsets are obtained as low-level features that represent the musical
structure of the movement dynamics. Streams of rhythm are focused on the time and thus generated choreography is
synchronized to musical accents and phrasing. Movement data streams are pose-based skeletal representations, which
are generated as a result of motion capture or video-based pose estimation. The positions of joints, angles and relative
limb orientations are represented in each frame and create a time-ordered record that captures human motion. Music
and movement streams are synchronized in time with a common timestamp structure in order to facilitate multimodal
learning. Conditioning variables may include optional metadata (e.g. dance style, emotional tone, performance
constraints, etc.) to allow choreography generation to be controlled.

4.2. FEATURE EXTRACTION USING CNNS AND TEMPORAL ENCODERS

The layer of feature extraction converts raw multimodal inputs into informative representations, which are small
and can be used in sequence modeling. Convolutional Neural Networks (CNNs) are used to run visual data, such as video
frames or heatmap of the position of humans in the space. These networks fly-capture spatial relationships including
body posture, limb positioning and inter-joint association which are vital in comprehending movement organization. In
case of pose-only input, skeletal connectivity and joint correlations can be effective with the help of graph-based or 1D
convolutional layers. The musical features are analyzed using special encoders which derive rhythmic and harmonic
patterns out of audio spectrograms or MIDI representations. These encoders maintain time continuity as well as
dimensionality reduction that facilitates the effective fusion of multimodal information. The mechanisms of feature
fusion integrate a representation of encoded music and movement by concatenation, by attention-based weighting or
cross-modal transformers.

4.3. SEQUENCE GENERATION VIA LSTM/TRANSFORMER LAYERS

The sequence generation component aims at generating timely coherent and expressive choreography based on
latent feature embeddings. The recurrent architectures that are applied to capture frame to frame dependencies and
gradual change in movement are recurrent architectures like Long Short-Term Memory (LSTM) networks. LSTMs can
learn the dynamics of contemporary poses during motion and rhythmic patterns and predict the future progression of
the dance, generating an entirely continuous sequence of posts, by remembering internal states of memory. Figure 2
depicts the LSTM Transformer architecture in sequence generation in choreography synthesis. Information flow is
controlled by gated mechanisms by decreasing sudden changes and providing biomechanical plausibility. Addition of
transformer-based layers is done to improve global sequence modelling.
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Figure 2
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Figure 2 LSTM-Transformer-Based Sequence Generation Architecture for Choreography Synthesis

Transformers can compare the relationships between all the time steps simultaneously by means of self-attention
and thus discover the long-range dependencies, repetitive motifs, and structural patterns in choreography. Such an
ability is specifically relevant to the creation of long dance patterns and their alignment with the same theme and musical
orientation. The positional encodings maintain the time series, whereas the multi-head attention enables the model to
pay attention to various elements of motion and rhythm at the same time.

5. APPLICATIONS AND IMPLICATIONS
5.1. AI-ASSISTED DANCE EDUCATION AND TRAINING SYSTEMS

Deep learning generated choreography can be used to revolutionize dance education and training through the
provision of intelligent, adaptable and accessible learning devices. Systems based on Al have the potential to produce
personalized practice routines, depending on the skill set of the learner, style of dance, and dance tempo, therefore,
allowing them to engage in individual training plans. Students have visual references of posture, timing and transitioning
of movements by creating skeletal animation with images or virtual avatars. Repetitive practice may also be aided
through such systems that provide variations of the same sequence allowing learners to become flexible, to memorize
and to range. Al-assisted tools are helpful to instructors in terms of automatic content generation and analytical feedback.
Teaching content can be generated choreography where rhythm alignment is demonstrated, spatial patterns, or a
difference in style between the different forms. Al systems can be used together with motion capture or camera-guided
tracking so that the movement of the student can be compared to generated or expert reference sequences and offered
quantitative feedback regarding truthfulness, smoothness, and time. This objective measure is a supplement of the
conventional qualitative training and assists in identifying points of improvement.

5.2. VIRTUAL PERFORMANCE DESIGN AND STAGE SIMULATION

The application of Al-created choreography is crucial to the design of virtual performance and simulation of the
stage, especially with regard to digital and hybrid performance. Deep learning models allow generating dynamic dance
sequences the visualization of which can be performed in the form of a virtual avatar, motion graphics or holograph
projection. These functions assist choreographers and stage designers to explore movement patterns, spatial structures
and timing without necessarily having to physically practice them. Tests in virtual stage simulation enable designers to
experiment with choreographies in varying lighting and camera angles and stage layouts to make planning more efficient
and exploration of creative possibilities. Live performances Artificial intelligence can be used to generate choreography
in real-time, with a musical backdrop and interactive systems to make adaptable performances that change tempo,
respond to user input, or environmental changes. This brings new prospects of participatory and immersive dance
experiences. In computer-generated performances, including online performances and metaverse events, Al
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choreography allows the production of the visually interesting one on a scale, without the need to involve people in the
large-scale human motion capture sessions.

5.3. CROSS-DOMAIN USE IN ANIMATION, FILM, AND VR ENVIRONMENTS

In addition to dance-related uses, choreography generation using deep learning has wide application in the fields of
animation, film, and virtual reality (VR). The production of lifelike and expressive movement of characters is a constant
challenge in animation and development of games. Choreography models based on Al offer automated motion
generation, which eliminates the use of manual keyframing, or the costly motion capture, with visual realism at any rate
of production speed. Dance sequences generated can be scaled to alternate character models, styles, and narrative
settings and help to create content at scale. Artificial intelligence-generated choreography may be useful in film and
digital media, helping pre-visualization in movies and animation films, where the director and animators can experiment
with the storytelling through movements prior to full production. Sophisticated crowd scenes, background dancers, or
staged performances can be created at high efficiency to increase the flexibility of creativity. In VR and augmented reality
(AR), Al choreography helps provide immersion through the generation of real-life-like avatars that behave in a natural
manner to the music and the user’s actions. It will be useful especially on virtual concerts, interactive exhibitions and
social VR platforms.

6. EXPERIMENTAL SETUP AND RESULTS
6.1. DATASET DESCRIPTION AND SPLIT RATIOS

Experimental assessment is performed on a curated set of choreography videos in the shape of synchronized dance
videos, pose-based skeletal sequences and related music tracks with beat annotations. It has a variety of dance styles,
tempos, and variations of the performers to achieve diversity and generalization. The pose sequences are separated at a
fixed frame rate and musical features are synchronized with the movement data. To train and evaluate the models, the
dataset is split by standard split strategy 70 percent of the sequences will be used to create the training set, 15 percent
to create the validation set, and 15 percent to create the testing set. Such a divide guarantees enough data to learn the
model and at the same time provides an ability to evaluate the performance without any bias. All the subsets maintain
cross-style representation to prevent any distributional bias.

Table 2
Table 2 Dataset Composition and Split Ratios

Dance Style Total Sequences Avg. Duration (s) Training (70%) Validation (15%)
Ballet 420 18.5 294 63
Contemporary 510 16.2 357 77
Hip-Hop 380 14.8 266 57
Folk/Traditional 290 20.1 203 44
Jazz 310 15.6 217 47

Table 2 shows the structure of choreography data and its distribution on training and validation subsets of the
various styles of dances. The collection of data shows equal stylistic diversity including classical, contemporary, urban,
and traditional styles of dance. The total generated sequence of dance in each style is distributed as indicated in Figure
3. Contemporary dance adds the most sequences (510) as it has a broad stylistic range and can be studied to learn how
to move in a flexible manner.
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Figure 3
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Ballet and jazz offer orderly movement vocabularies with moderate number of sequences which facilitates the
modelling of controlled and rhythmically accurate choreography. The Hip-hop sequences highlight high tempo and
change-of-direction and can therefore be useful in assessing the temporal sensitivity of deep learning models. Although
folk and traditional dances are the least numerous, they have the longest average (20.1 seconds), and they embrace
extensive rhythmic cycles and culturally rich movement patterns. The bar visualization of the metrics of dance style
datasets is compared as seen in Figure 4.

Figure 4
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Figure 4 Comparative Bar Visualization of Dance Style Metrics for Dataset Preparation

The 70% training/15 percent validation split is constant across all styles so that there is consistency in exposure to
learning and the performance can also be tuned on representative validation data. It offers a strong generalization
capability by avoiding style-specific bias and offers a justifiable comparative appraisal of choreography generation
models in various spheres of movement.

6.2. QUANTITATIVE EVALUATION METRICS (MAE, FID, SMOOTHNESS INDEX)

Quantitative measures of model performance are applied to measure the accuracy, realism, and motion continuity.
Mean Absolute Error (MAE) is used to measure the mean error between generated and ground-truth joint positions,
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which is a measure of the accuracy of pose prediction. In motion features, Fréchet Inception Distance (FID) is used to
measure the similarity of the distributions of real and generated dance sequences, which is perceptual realism and
diversity. Temporal coherence is specifically measured with the help of a Smoothness Index, which is calculated using
frame-to-frame change in joint velocities and accelerations, and punishing jitter and sudden transitions. The decreasing
values of MAE and FID with increasing values of smoothness suggest better choreography generation quality in balance
between accuracy, realism, and continuity of expressiveness.

Table 3

Table 3 Quantitative Performance Comparison of Choreography Generation Models

Model Type MAE (1) FID (1) Smoothness Index (%) Rhythm Alignment (%)
LSTM 0.084 42.6 86.3 82.1
GRU 0.079 39.8 87.5 83.6
Transformer 0.062 31.4 91.2 89.7
LSTM + GAN 0.068 34.9 92.4 88.1

Table 3 provides a comparison of the performance of various deep learning models in choreography generation
based on the metrics of accuracy, realism, smoothness and rhythm alignment. The most basic LSTM model has the
highest values of MAE and FID, which makes it less accurate in poses and less realistic, but still with a good smoothness
thanks to the sequential memory structure. Figure 5 presents the comparison of the MAE of sequential and hybrid
prediction models.

Figure 5
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Figure 5 MAE Comparison Across Sequential and Hybrid Prediction Models

GRU model has slight improvements over LSTM in all metrics, which is a valid indication of its more efficient gating
process and better response to the time dependencies. Figure 6 displays the comparison of FID, smoothness, rhythm
alignment of architectures using area plot. Transformer based models show a significant performance improvement with
a much lower MAE and FID value and an increased score of Smoothness Index and Rhythm Alignment.
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Figure 6
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Figure 6 Area Plot of FID, Smoothness, and Rhythm Alignment Across Sequence Modelling Architectures

This brings out the success of self-attention in the attendance of long-range dependencies and international
choreographic framework. The hybrid LSTM + GAN model goes further to increase the quality of perceptual, as indicated
by the improvement of smoothness and rhythm alignment, because of the adversarial training, which promotes realistic
motion transition. All in all, the findings suggest that there is a broad evolution of recurrent to attention-based and hybrid
generative architectures, and more advanced models are able to generate a more fluid, accurate, and musically
synchronized sequence of choreography.

7. CONCLUSION

This paper has provided extensive research on the deep learning models in choreography generation and the ways
the model can revolutionize the process of creating, analyzing, and sharing dance. The proposed framework shows how
complicated connections between movement and music can be effectively modeled with the help of the current
techniques of artificial intelligence by employing multimodal data sources, including pose-based skeletal
representations, video frames, and musical rhythm cues. With the shift towards the data-driven deep learning models of
the dance sequence creation, the problem of traditional rule-based choreography systems is replaced with the idea of
flexibility, colouring stylistic diversity, and expressiveness in the generated dance sequences. Recurrent architectures,
such as LSTM models and GRU models, were found to be effective to express local temporal continuity and motion
transition, whereas transformer-based networks to be more effective in expressing global sequence coherence and long-
range dependencies. The use of modern generative methods also increased the realism and the fluidity, and it solved
most of the popular issues like motion stuttering and unnatural transitions of poses. Quantitative measures (MAE, FID,
Smoothness Index) of experimental evaluation showed that models based on deep learning could produce choreography,
which was rhythmically and visually convincing across a wide range of dance styles. In addition to the technical
performance, the consequences of this study are applicable in various fields of application. Al-assisted choreography
systems can be used in the field of dance education and training to facilitate personalized learning, objective feedback,
and remote training. Like in performance design, the virtual stage simulation and adaptive choreography introduces
novel creative possibilities.
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