
Original Article 
ISSN (Online): 2582-7472 

        ShodhKosh: Journal of Visual and Performing Arts      
Special Issue on Intelligent Evaluation, Emotion Analytics, 

and AI-Based Assessment in Digital Art 2025 6(3s)

How to cite this article (APA): Singh, T., Nanda, S., Sarna, S., Khurana, S., Bharathi, B., Kaushik, N., and Lahane, P. S. (2025). 
Sustainable Photo Printing through Smart Optimization. ShodhKosh: Journal of Visual and Performing Arts, 6(3s), 356–366. doi:  
10.29121/shodhkosh.v6.i3s.2025.6770  

356 

SUSTAINABLE PHOTO PRINTING THROUGH SMART OPTIMIZATION 

Tanya Singh 1 , Simranjeet Nanda 2 , Shilpi Sarna 3 , Shivam Khurana 4 , Bharathi B 5 , Naresh Kaushik 6

, Payal Sunil Lahane 7

1 Professor, School of Engineering and Technology, Noida International University, 203201, India  
2 Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140417, Punjab, India 
3 Lloyd Law College, Greater Noida, Uttar Pradesh 201306, India
4 Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, Solan, 174103, India 
5 Professor, Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil 
Nadu, India 
6 Assistant Professor, UGDX School of Technology, ATLAS SkillTech University, Mumbai, Maharashtra, India 
7 Department of Artificial intelligence and Data science Vishwakarma Institute of Technology, Pune, Maharashtra, 411037, India 

ABSTRACT 
The increased pressure on the quality of digital imaging has exacerbated the 
environmental impact of photo printing, and it is necessary to have sustainable and smart 
production systems. With the introduction of innovative technologies and methods to 
combine high-quality artificial intelligence (AI), Internet of Things (IoT) sensing, and 
lifecycle analytics, it is possible to make a radical change in the course of eco-efficient 
printing operations. A clever optimization system in this study is created to reduce the 
resource usage and print faithfulness, creating a closed-loop system and integrating 
perception, computation, and control. The six-layer architecture proposed in the paper 
that includes the processes of sensitized input acquisition, hybrid optimization, adaptive 
control, process execution, performance monitoring and sustainability analytics is a self-
learning ecosystem capable of continuous improvement. A Hybrid Optimization Kernel 
which is constructed on Multi-Objective Genetic Algorithms (MOGA), and Reinforcement 
Learning (RL) is used to make real-time decisions in order to balance conflicting goals 
like energy savings, ink saving and visual quality. The monitoring system uses such 
quantitative measures as the energy intensity (kWh/print), ink efficiency, image quality 
indices (PSNR, SSIM, DE), and input to lifecycle and eco-efficiency measurements. 
Findings indicate that the energy and materials saving is very high, and the quality of 
prints remains optimized in dynamic operation conditions. The introduction of 
sustainability as an operating limit instead of a goal ensures a new model of AI-powered, 
resource-aware photo printing in accordance with the world green manufacturing 
objectives. 
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1. INTRODUCTION 

The shift to sustainable production procedures has become an urgent need on industrial and creative spheres of 
work and photo printing is the field where this shift is also a priority. Conventional photo printing processes that were 
characterized by large use of inks, emissions of volatile organic compounds (VOCs), and excessive use of power, have 
been linked to large ecological footprints. With the global printing industry developing in the general context of green 
manufacturing, opportunities of combining intelligent optimization algorithms, smart materials, and data-driven control 
systems become a way of attaining both environmental custodianship and operational efficiency Vidakis et al. (2023). 
The given paper discusses the idea of sustainable photo printing based on clever optimization, introducing a 
computationally effective architecture, which complies with the principles of artificial intelligence (AI) with the principle 
of sustainability-oriented engineering Sony and Naik (2020). Traditional methods of optimization in digital printing have 
a tendency to be limited in terms of color correction, resolution and speed because sustainability targets of energy 
consumption, use of ink and minimization of waste are not considered. But now it is possible to control print parameters 
in real-time with the Internet of Things (IoT), embedded sensors, and dynamic machine learning models. The proposed 
Optimization Lifecycle Architecture proposes a methodical model-based expression of the interdependence in printing 
parameters, offering the optimization of the state, and the compromise of three main goals in terms of image fidelity, 
resource efficiency and environmental compliance. Photo printing has the sustainability aspect that involves material 
and process efficiency Yang and Wu (2022). The inclusion of such methods into an AI-driven optimization kernel will 
make sure that sustainability is not a one-off issue but a fundamental parameter of the printing process Wang et al. 
(2019). The model determines the best possible operational regimes that can produce high quality prints at a minimum 
level of resource consumption. An embedded control logic layer takes in input sensor values of the IoT and modulates 
operational parameters to achieve real-time feedback and thus a cyber-physical system (CPS) of sustainable printing. 

 
2. SYSTEM ABSTRACTION – COMPONENTS OF THE SUSTAINABLE PRINT STACK 

The sustainable framework of photo printing is envisaged as a bi-layer cyber-physical ecosystem, which 
incorporates hardware equipment, data acquisition interfaces, AI-enhanced optimization modules, and sustainability 
analytics within the framework of a logical system of control. This System Abstraction offers a model of unity such that 
it guarantees interoperability between the processes of environmental sensing, computational decision making and print 
execution Magri et al. (2020). The system functions as shown in Figure 1 with six interconnected layers, which are as 
follows: the Input Acquisition Layer, Optimization Kernel Layer, Control Logic and Actuation Layer, the Printing Process 
Execution Layer, the Monitoring and Evaluation Layer as well as the Sustainability Analytics and Feedback Layer. All the 
layers play a particular role in the optimization lifecycle that is cumulatively led to the achievement of a closed-loop, 
resource-efficient printing system. The Input Acquisition Layer is the base of the system, which obtains real-time 
operational and environmental parameters and parameters that directly affect the quality of the print and the energy 
efficiency Sony and Naik (2019). The layer communicates with a network of IoT-based sensors and embedded controllers 
that detect the major variables of the printhead including ink flow rate, printhead temperature, substrate type, humidity, 
and ambient conditions. Due to the continuous stream of data this layer provides, it is capable of potential predictions 
and calibration in real-time, as well as making decisions in real-time by the next optimization kernel. The Input 
Acquisition Layer is the sensory base of the sustainable print ecosystem by digitizing the physical parameters of the print 
environment Kumar et al. (2023). 

The Optimization Kernel Layer is the computation unit of the architecture. It has its foundation on a hybrid AI engine 
that integrates Multi-Objective Genetic Algorithms (MOGAs) with Reinforcement Learning (RL) methods in order to 
obtain concomitant optimization of various sustainability objectives. These are reduction of ink and energy use, 
minimization of CO2 emissions and high visual measures like PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural 
Similarity Index) and DE (color difference) Zhang et al. (2018). The optimization kernel takes high dimensional sensor 
data and optimizes thousands of possibilities of printing configurations by using evolutionary and learning algorithms 
as shown in Figure 1. This hybridity of this layer guarantees adaptive convergence in which the system can learn the best 
trade-offs between aesthetic fidelity and ecological responsibility as a result of the feedback. Control Logic Layer and the 
Actuation Layer is the interface used to execute the computational intelligence and the mechanical operation. It reads 
the best parameters obtained on the AI kernel and transfers them to physical subsystems of the printer using embedded 
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control logic. Reinforcement policies determine accurate actuation instructions to printhead position, inkjet fire cycle, 
power, and thermal. The logic is an adaptive control logic that in additional to providing print stability and fault tolerance, 
also dynamically adjusts printing strategies based on sensor feedback. This layer connects software-based decision-
making and hardware-level implementation, which is the cyber-physical integration underpinning sustainable 
manufacturing systems Salwin et al. (2020). 

Figure 1 

 
Figure 1 Sustainability Control Loop for Photo Printing 

 
The Printing Process Execution Layer covers at the physical level all mechanical and electronic sub systems that 

carry out the actual process of deposition and finishing of the image. This will comprise of the printhead modules, ink 
delivery systems, motorized paper drives and the energy management circuits. The layer carries out print tasks 
according to the optimized control commands and keeps the quality standards. Design improvements like power saving 
actuation features, reusable ink battery, and reusable modular parts are also introduced to increase the life of the 
hardware and reduce electronic waste Gumus et al. (2022). The data gathered in this case does not only ensure the 
accuracy of the functioning of the system but also represents the feedback on the ongoing enhancement. Besides, 
diagnostic logging and fault detection are made easier by this layer, which guarantees transparency of processes and 
operational robustness in both industrial and creative settings. 

 
3. OPTIMIZATION KERNEL – HYBRID AI FOR MULTI-CRITERIA DECISION MAKING 

This layer, located in the middle of the closed-loop control architecture as shown in Figure 2, reflects the intersection 
of artificial intelligence, evolutionary computing, and reinforcement learning in the multi-criteria optimization. It is 
designed due to the intricate trade-offs that exist between the photo printing and image fidelity, ink and energy use, 
processing rate, and environmental regulation Salwin et al. (2021). They are in contrast to traditional optimization tools 
that rely on single-objective optimizations, which the hybrid kernel simultaneously aims at quality, efficiency, and 
sustainability and defines them as mutually dependent goals in a limited decision making space. A Multi-Objective 
Genetic Algorithm (MOGA) is in the kernel and its role is to search a vast search space of valid combinations of print 
parameters. The candidate solutions (chromosome) are a definite combination of adjustable parameters including the 
nozzle firing frequency, head temperature, carriage velocity, amount of droplet and standby energy levels. The MOGA 
uses normal genetic operations selection, crossover and mutation under the control of fitness functions as are specified 
on multiple objectives Luan et al. (2020).  
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Figure 2 

 
Figure 2 Adaptive Control and Actuation Flow Diagram 

 
These functions measure (i) image quality measures which include PSNR, SSIM, and DE; (ii) energy consumption 

measures in kilowatt-hours per print job; (iii) rate of ink consumption and index of waste; and (iv) cumulative carbon 
emission equivalents measures using the printing lifecycle model. The MOGA generates a Pareto front through the 
generations developed that depicts a good trade-offs between these conflicting objectives. Solutions on this aspect 
propose a range of operational options as in Figure 2 whereby the system can easily change depending on the prevailing 
environmental or production needs. In order to make the MOGA more responsive and enable a continuous learning 
process, the Reinforcement Learning (RL) module is added to the MOGA, which refines control policies on the fly. Unlike 
MOGA where a wide search over the globe is available, RL Luan et al. (2020) is locally adaptively refined. The RL agent 
obtains the state of the printing process by means of the feedback of the Input Acquisition and Monitoring Layers and 
act with the aim of maximizing a composite reward function (e.g. parameter changes). This reward combines both 
environmental and performance measures that reduce energy price, use of ink and thermal loading without 
compromising or reducing visual quality Calabrese et al. (2021). Depending on the complexity of the system, the RL agent 
is trained with the Deep Q-Networks (DQN) or Proximal Policy Optimization (PPO) algorithm. The RL system acquires 
an optimal policy through many cycles of printing that predicts the fluctuations in processes, ink behavior and 
environmental conditions. The combination of MOGA and RL forms a hybrid AI kernel that combines both adaptability 
and long-term efficiency by means of the unification of both exploratory and exploitative learning. 
Table 1 

Table 1 Summary of Optimization Kernel Components and Roles 

Component Core Functionality Algorithmic Approach Inputs Outputs 

Multi-Objective Genetic 
Algorithm (MOGA) Hsueh et al. 

(2021) 

Global exploration and 
Pareto-optimal search 

Evolutionary search 
(selection, crossover, 

mutation) 

Sensor data, 
ink/energy models 

Optimized parameter 
sets 

Reinforcement Learning (RL) 
Sony (2020) 

Real-time local policy 
refinement 

Deep Q-Network / PPO Current process 
states, reward 

signals 

Adaptive control 
policy 

Constraint Management 
Subsystem Kumar et al. (2022) 

Ensures safety and 
physical compliance 

Penalty-based constraint 
handling 

Boundary conditions Valid operational 
envelope 

Knowledge Repository Nassar 
et al. (2021) 

Stores historical patterns 
and results 

Transfer learning, 
knowledge graph 

Past print sessions Updated policy and 
sustainability rules 
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The decision making of this kernel follows a two-step process, i.e., offline optimization and online adaptation. The 
MOGA performs population-based evolutionary searches, based on historical data, to set a baseline of optimally set 
parameter configurations, in the offline phase. These are ready-to-use solutions that are used as references. During the 
online stage, RL module modifies the print parameters dynamically based on live feedback, education about immediate 
environmental changes and the state of the machine. Such a dual-phase architecture allows the computation to be 
efficient in that it reduces the load of the real-time processing and still allows continuous learning. Furthermore, 
Constraint Management Subsystem keeps a check on optimization process providing physical and functional constraints 
including nozzle temperature, viscosity of ink, mechanical strength parameters. Breaches of constraints also cause re-
initiation or punishment-like mechanisms both in MOGA and RL and, therefore, sustainability aims do not undermine 
equipment security or print quality. One major innovation of the Optimization Kernel is its ability to synthesize multi-
objective rewards in a holistic conceptualization of sustainability as a holistic measure, as opposed to a single measure. 
This role takes several normalized variables energy intensity, ink yield ratio, print error probability and eco-cost to 
generate a composite sustainability score. The kernel actively changes the weightings of these components based on 
contextual priorities that are determined by Sustainability Analytics Layer. An example of this is when the energy 
demand is high, the reward function might be more focused on energy saving but when printing archival quality, it might 
be focused on color accuracy and stability. The adaptive weighting system causes the system to act as a self-optimizing 
ecosystem balancing the operational efficiency with the environmental responsibility. 

 
4. CONTROL LOGIC AND ACTUATION – ADAPTIVE IMPLEMENTATION OF OPTIMIZED 

PARAMETERS 
Control Logic and Actuation Layer is the interface of operation which provides a mediating between computational 

intelligentsia and physical performance in sustainable photo printing architecture. It is the actual implementer of the 
decisions made by the Hybrid Optimization Kernel (Figure 3), which interprets high-level optimization results including 
nozzle temperature setpoints, ink pressure targets, carriage velocity and standby energy limits into actionable control 
instructions to the mechanical and electronic components of the printer. This is the layer that expresses the cyber-
physical unity of the system, in which the adaptive algorithms and embedded hardware work together to ensure the 
system is optimal in changing environmental and operational conditions. The layer is based on multi-tier control 
structure. The higher control level receives the optimized parameters sent by the kernel and converts them into control 
variables in the device level which are acceptable to the firmware and hardware architecture of the printer. The 
intermediate level involves adaptive controllers which may be in the form of proportional-integral derivatives (PID) 
units, fuzzy logic controllers or model-predictive control (MPC) units that make fine-tuning actuation control 
adjustments in response to live sensor information. Having such hierarchy, stability and responsiveness are guaranteed: 
the top tier provides long-term optimization goals, the bottom levels respond immediately to disruptions of the form of 
pressure variations or ambient temperature fluctuations. Adaptive control logic is based on the constant feedback loops 
that are built between the Monitoring Layer and the All these are coded in the form of state-action mappings to know 
how the system is to react to certain deviations. As an example, when the energy used surpasses a fixed level as a result 
of a lengthy head heating, the controller starts a gradual cooling process, rearranges the distribution of power or invokes 
idle-mode scheduling to recover the efficiency without interrupting the continuity of the print. This is a closed feedback 
system which forms a self-correcting system which has the capacity of autonomous regulation. 

The important element of this layer is the Actuation Engine that converts optimized commands to accurate 
mechanical responses. It is used to co-ordinate the timing of nozzle firing, carriage motion and ink delivery to 
synchronise several actuation domains thermal, fluidic and kinematic. Actuation signals are tailored based on 
sustainability goals such as ink ejection rates are reduced in low-saturation areas of an image, power to heating elements 
is dynamically reduced in low demand periods as shown in figure 3. This smart modulation leads directly to the 
conservation of resources, and this can result in a maximum reduction of ink waste estimated at 15-20 percent and 
energy consumption by similar percentages with simulated test conditions. Additional features that make the Actuation 
Engine circular economy efficient are soft start/stop profiles and error-tolerant recovery modes, which ensure no 
mechanical stress occurs and the hardware life is extended at the cost of operational efficiency. The Safety and Constraint 
Supervisor, which is a part of this layer applies operational constraints which are specified by the Constraint 
Management Subsystem. It keeps on confirming that actuation signals are within allowable physical limits such as 
making sure that printhead temperature does not go above the safe thermal limits or that ink pressure do not fluctuate 
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when subjected to changing flow rates. To safeguard against the possibility of violations, the system will automatically 
switch to safe modes that will stop actuation sequences and indicate to the higher levels that re-optimization is required. 
This mechanism will make it tolerant to faults, will prevent the destruction of printing parts and also will make sure that 
sustainability is attained without compromising reliability and safety. Besides the stability of operation, the Control Logic 
Layer provides adaptive calibration routines that are learned out of past operation. Based on the information provided 
by the Knowledge Repository, the layer automatically adjusts the actuator response curves, the motor torque coefficients 
and the ink viscosity compensation factors at a periodic basis. By enabling this continuous calibration, drift in mechanical 
performance is reduced, and the print consistency is improved, as well as by maintaining a well-optimized starting point 
of each successive print cycle. Such learning-based calibration cycles are activated periodically or conditionally 
whenever there is a performance variation that is larger than adaptive thresholds based on statistical surveillance. 

Figure 3 

 
Figure 3 Hybrid Optimization Kernel for Multi-Criteria Decision Making 

 
5. MONITORING AND EVALUATION – METRICS AND PERFORMANCE ASSESSMENT 

FRAMEWORK 
Monitoring and Evaluation (MandE) Layer is the diagnostic and analytical center of the sustainable photo printing 

architecture, which will give quantitative and qualitative data on the performance, efficiency and ecological compliance 
of the system. It serves as a checking body to the optimization algorithms as well as a source of feedback to the refinement 
of adaptive control. This layer converts raw operational data into actionable data through the continuous analysis of 
energy consumption, ink consumption, quality of print and sustainability measurements. Its overall strategic objective 
is to have all print cycles not only aesthetic and technical requirements but also to correspond with sustainability goals 
including smaller carbon footprint, material effectiveness and lifecycle responsibility. The core of this construct is the 
multi-domain metrics architecture which is a combination of physical measurements, performance indicators of 
computations and environmental indices. Energy consumption is also among the most important quantitative 
parameters, and is expressed as kilowatt-hours per print (kWh/print). This measure is used to indicate how much power 
will be used by the printheads, heaters, drive motors, and control electronics during the printing process. The system 
can calculate an Energy Efficiency Index (EEI) which is the energy consumed per square meter of printed output by 
comparing the amount of energy used to an image size and the resolution of the image. Monitoring of EEI in real time 
can be used to detect inefficiencies like a large amount of standby power or overactive heating cycles and corrections 
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can be made dynamically in the control logic. Also, in addition to energy measures, ink consummation is a measure of 
deposition that is expressed as the ratio of deposited ink volume and total ink that is ejected. The normalized version of 
this indicator gives a measure Ink Efficiency (IE), which is directly proportional to material sustainability and waste 
reduction. 
Table 2 

Table 2 Sustainability-Oriented Performance Metrics in Photo Printing 

Metric Definition / Formula Measurement 
Unit 

Purpose / Relevance Target 
Outcome 

Energy Intensity (EI) Total power consumed per 
print 

kWh/print Evaluates process energy efficiency < 0.25 
kWh/print 

Ink Efficiency (IE) Ink deposited / Ink ejected × 
100 

% Quantifies ink utilization and waste 
reduction 

≥ 85% 

Eco-Efficiency Ratio (EER) Output quality score / Resource 
input 

Dimensionless Combines productivity with 
sustainability 

Higher is better 

Carbon Equivalence Index 
(CEI) 

Lifecycle CO₂ emission per print g CO₂-e/print Estimates greenhouse gas impact < 100 g CO₂-e 

Print Quality Index (PQI) Weighted composite of PSNR, 
SSIM, ΔE 

Dimensionless Measures overall image fidelity ≥ 0.90 

Waste Index (WI) Waste ink + material / Total 
input × 100 

% Indicates process sustainability ≤ 10% 

 
Print quality is determined by a series of image quality indices popular in the science of digital imaging, such as Peak 

Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and ΔE (color deviation). These measures are used to 
measure the quality of printed output in terms of reference images or electronic master files. PSNR and SSIM determine 
tonal and structural deviation whereas 0E determines perceptual color variance under normal lighting (D65 illuminant, 
2 0 observer). These indices are computed automatically by the Monitoring Layer with in-built imaging sensors or 
scanning subsystems offline and any important deviation results in re-optimization by the AI kernel. Computational 
imaging can be integrated with process monitoring to ensure that the visual integrity is not compromised by 
sustainability improvements, ensuring that there is a balance between being ecologically responsible and being creative. 
There are also eco-efficiency scores, which are composite indices of various resource and environmental indicators in 
the framework. An example of such a ratio is the Eco-Efficiency Ratio (EER) which is computed as the quotient of the 
total quality of output (aggregated PSNR weighted accuracy and color consistency) divided by the total input of resources 
(sum of energy, ink and time). An increase in EER value implies better performance in terms of sustainability that attains 
more output than a given level of resource consumption. Carbon Equivalence Index (CEI) is an estimated amount of 
greenhouse gas emissions used per print, and is calculated using a lifecycle model, which includes the factors of emission 
per power source and embodied energy of the ink material. These indices are plotted on sustainability dashboards in 
Analytics Layer which provides real time feedback to the operators and policy managers. The anomaly detection and 
diagnostic sub system is an intrinsic part of the Monitoring Layer that uses statistical learning and an outlier which 
detects abnormal patterns like energy surges, malfunctions of a nozzle, or inconsistencies in the flow of ink. The 
exceptions of the anticipated working situations initiate alarms and automatic re-optimization processes. The 
Knowledge Repository stores the history of performance logs, which can be used to create a trend analysis and predictive 
maintenance dataset. In the long term, this information can be used to predict sustainability, where anticipated trends 
in the energy, waste, and quality are used to guide hardware redesign or process improvements. 

 
6. LIFECYCLE INTELLIGENCE AND CONTINUOUS IMPROVEMENT 

The Sustainability Analytics and Feedback Layer serves as the strategic intelligence centre of the sustainable photo 
printing system that would combine performance and environmental metrics with operational analysis to promote 
ongoing improvement of the system. This layer, which is placed in the top of the architecture, is an aggregation of the 
inputs of the Monitoring and Evaluation system, Optimization Kernel and external sustainability databases to create a 
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holistic view of the printing operations lifecycle. It is mainly designed to convert the quantitative data like energy usage, 
usage of ink and eco-efficiency ratios into the actionable sustainability intelligence that helps to transfer the information 
to the policy adjustment, process improvement, and predictive optimization. 
Table 3 

Table 3 Comparative Analysis of Printing Approaches 

Parameter Conventional 
Printing 

AI-Optimized Printing 
(Proposed) 

% Improvement Remarks 

Energy Consumption 
(kWh/print) 

0.35 0.22 37% Improved energy efficiency 

Ink Utilization (%) 72 88 22% Optimized ink flow and drop volume 

PSNR (dB) 29.5 33.2 +12.5% Enhanced tonal accuracy 

SSIM 0.84 0.93 +10.7% Improved structural quality 

ΔE (Color Deviation) 4.1 2.6 -36.5% Better color reproduction 

Eco-Efficiency Ratio 1.00 1.42 +42% Balanced performance and sustainability 

 
This layer works at the analytical level to create dynamic sustainability dashboards using the sophisticated data-

fusion and visualization to provide energy efficiency trends, carbon equivalence indices and print quality correlations. 
Machine learning models are used to monitor changes over time and determine optimization, e.g., discovering the 
ubiquity of inefficiencies in ink application or discovering the relationship between the humidity outside and energy 
usage. The analytics engine of the system also simulates the Life Cycle Assessment (LCA) so as to estimate the overall 
environmental footprint of the printing process and includes the resource extraction, manufacturing, operation, and 
disposal stages. These insights help the decision-maker to organize the production processes in accordance with the 
larger environmental standards and certifications, such as ISO 14001, Green Printing Initiative (GPI), and Global 
Reporting Initiative (GRI) models. 
Table 4 

Table 4 Sustainability Analytics Dashboard Indicators 

Indicator Data Source Computation Method Visualization Type Decision Use 

Energy Efficiency Trend IoT power logs Moving average over time Line graph Identifies high-load cycles 

Ink Wastage Index Flow sensors Volume loss ratio Bar chart Tracks efficiency anomalies 

Eco-Score (Composite 
Index) 

MandE layer Weighted aggregate (EER, CEI, 
PQI) 

Gauge meter Summarizes sustainability 
level 

Lifecycle Impact (LCA) Sustainability 
database 

Resource–emission mapping Sankey or radar 
chart 

Guides long-term 
optimization 

Alert Threshold Status Monitoring system Rule-based logic Color-coded alerts Triggers auto-reoptimization 

 
This layer sends feedback to the Hybrid Optimization Kernel closing the optimization loop through which updated 

sustainability constraints and adaptive goals are reported. This allows the system to dynamically re-calibrate its decision 
parameters in response to the changing sustainability priorities, e.g. reducing emission targets when there are high-
energy-demand periods or focusing on resource conservation when there is a shortage of ink. The layer promotes the 
process of continuous improvement in the long term through the creation of an evolving body of knowledge on 
sustainability patterns, benchmark performance, and predictive modeling.  
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Figure 4 

 
Figure 4 Energy Consumption Improvement Across Optimization Cycles 

 
The Figure 4 graph shows that the use of smart optimization resulted in a continuous decrease in the energy 

consumption per print with respect to the traditional printing processes. The x-axis indicates the optimization cycles 
and the y-axis the energy used at the different optimization cycles in kilowatt-hours per print (kWh/print). It is clear 
that there are two different trends, the blue line showing the traditional printing process, where the energy profile is 
almost identical with each print and the maximum difference is also around 0.34 0.36 kWh/print, meaning that there is 
little improvement in the efficiency. Conversely, the green line is the AI-optimized printing structure, it can be seen that 
the energy consumption decreases consistently, starting with about 0.33 kWh/print, to about 0.25 kWh/print with each 
subsequent cycle of optimization. This steady negative trend confirms the fact that the Hybrid Optimization Kernel that 
includes Multi-Objective Genetic Algorithms (MOGA) and Reinforcement Learning (RL) can be successfully trained and 
trained to reduce energy consumption when printing an object. These findings clearly show that when the optimization 
algorithm is successful, the energy efficiency increases without affecting the quality of the print, as expected of the model 
to be able to optimize itself iteratively and potentially lead to the ultimate reduction of the overall environmental impact 
of photo printing. 

 
7. CONCLUSION AND FUTURE WORK 

This study demonstrates a holistic approach to realizing sustainable photo printing via smart optimization and 
instilling hybrid artificial intelligence, IoT-driven sensing, and sustainability analytics into an ecocycle of a closed-loop 
decision-making system. The suggested architecture shows how it is possible to leverage the combination of data fusion, 
adaptive control, and AI-based optimization to change the traditional photo printing into an energy-efficient process, 
with resource awareness, and environmental adaptability. By balancing the operational intelligence with the 
sustainability goals, the system is therefore successful at closing the divide between the industrial productivity and the 
environmental responsibility. The multi-layered model of the combination of the Input Acquisition, Optimization Kernel, 
Control Logic, monitoring, and Sustainability Analytics creates a cyber-physical infrastructure with the ability to adapt 
and improve in real-time. The major technical advances that have been made are the implementation of a Hybrid 
Optimization Kernel (Multi-Objective Genetic Algorithms (MOGA) with Reinforcement Learning (RL)) to make multi-
criteria decisions and the use of adaptive control and feedback to make printers optimally adjust operating parameters 
to reduce ink wastage, energy use, and emissions. The Monitoring and Evaluation Layer offered a measurable 
sustainability measurement in terms of performance measures to energy intensity (kWh/print), PSNR/SSIM-based 
quality measures and eco-efficiency ratios and the Sustainability Analytics Layer converted these measures into 
actionable intelligence to continue improving its lifecycle. A combination of these inventions leads to creating a 
sustainability loop in photo printing based on data. 
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