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B This study applies a predictive maintenance model of digital printing equipment based
updates on the concept of IoT-enabled sensing, machine learning analytics, and digital twin
simulation that allows predicting faults in real time and optimizing maintenance. A
CNNLSTM hybrid model was designed and used to forecast faults and Remaining Useful
Life (RUL) by analyzing vibration, temperature, acoustic, and optical data. Multi-sensor

Received 18 March 2025

Accepted 22 July 2025
Published 20 December 2025

Corresponding Author
Mithun KumarS.,

DOI

printing testbed experimental implementation showed high predictive accuracy (R 2 =
0.94, F1 = 0.93), which decreased the unplanned downtime by 32, maintenance cost by
24, and material waste by 18. The virtual copy of the printing system of digital twin was
a dynamic one that enabled continuous synchronization, what-if analysis, and the
creation of adaptive alerts. The suggested architecture is environmentally friendly, as it

optimizes the energy consumption, increases the lifespan of the components, and reduces
the waste which will also meet the Industry 4.0 and smart manufacturing goals. This
study defines predictive maintenance as a scalable, cost effective, and environmentally

Funding: This research received no . ; o R
friendly approach of the next generation digital printing ecosystem.

specific grant from any funding agency in
the public, commercial, or not-for-profit
sectors. Keywords: Digital Printing Equipment, Digital Twin, I0T Sensors, Remaining Useful

Copyright: © 2025 The Author(s). Life (RUL), Anomaly Detection, Machine Learning, Smart Manufacturing

This work is licensed under a

With the license CC-BY, authors retain
the copyright, allowing anyone to

download, reuse, re-print, modify,
distribute, and/or  copy  their
contribution. The work must be

properly attributed to its author.

1. INTRODUCTION

The swift development of digital printing devices has shifted the printing business industry into a data-oriented
producing system, and turned it from a mechanical, craft methodology. The digital presses nowadays combine high
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Predictive Maintenance for Digital Printing Equipment

accuracy mechatronics, in-board sensors, and real time process controllers, to provide high quality output in a wide
range of substrates. The growing complexity of printheads, ink-delivery systems, motion actuators, and thermal control
components, however, too, has rendered these machines prone to insidious degradation effects that cannot be readily
understood by traditional regimes of maintenance before they manifest themselves. Unplanned failures, blockage of
nozzles and misalignment of registration interfere with production besides causing huge financial losses in terms of
wasted material, downtime and service delays. In high-volume printing scenarios where the cost of equipment is directly
proportional to the profitability, unplanned maintenance can be as much as 2030 percent of the cost of operation
Calabrese et al. (2020). This has driven the shift in paradigm towards reactive and preventive maintenance to predictive
maintenance (PdM) which is an intelligence-driven maintenance concept that uses real-time condition-based data and
machine learning models to predict failures before they happen. The functionalities of predictive maintenance are based
on constant observation of health factors of the machines in the form of vibration, temperature, current load, ink
viscosity, and optical print quality indices. Combining these heterogeneous signals via the IoT-based sensors and edge
computing platforms, it is possible to form the rich operational datasets that record the actual behavior of the printing
system Russell-Gilbert et al. (2024). Hidden patterns, anomalies and degradation patterns that lead to functional failures
can then be identified by artificial intelligence and advanced analytics. The system forecasts the Optimal maintenance at
the expense of minimizing the unscheduled and over-maintenance by estimating the Remaining Useful Life (RUL) of the
critical components, thus, predicting the most appropriate maintenance intervals Zhang etal. (2024), Zhang et al. (2019).
The predictive analytics precision in digital printing are required to achieve high-quality print output and reliability of
the process since any slight variation in nozzle ejection or drum positioning compromises color accuracy and resolution.
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Figure 1 Block Schematic of Predictive Maintenance Ecosystem for Digital Printing Equipment

Regardless of the obvious benefits, the introduction of PdM into the digital printing setting has several problems.
The variability of the print jobs, non-stationary operational cycle and environmental dependency cause noise and
nonlinearity in sensor data. In addition, there is a relative lack of data that has been labeled as failures to be used to train
the supervised learning models as shown in Figure 1. The successful predictive maintenance thus needs to be hybrid
where data-driven strategies are used together with the domain knowledge, signal processing, and physical model of
wear mechanisms. The interoperability with the current manufacturing execution systems (MES) and human-machine
interfaces (HMIs) also require effective interoperability standards and understandable Al-produced results that can be
relied on by the maintenance engineers Yang et al. (2022). Therefore, the study will develop a comprehensive predictive
maintenance system to suit digital printing devices (integration of the loT-based data collection, intelligent anomaly
detection, and the digital twin simulations) to increase the reliability of machines, decrease operational expenses, and
provide sustainable production conditions in Industry 4.0 printing settings Valis and Pietrucha (2014).

2. ARCHITECTURE OF THE PREDICTIVE MAINTENANCE ECOSYSTEM

The digital printing equipment predictive maintenance ecosystem can be considered an architecture that is a multi-
layered cyber-physical architecture that combines loT-enabled sensing, cloud-based analytics, and decision-support
visualization in the layer. Figure 1 shows the conceptual representation of this architecture that provides a complete
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feedback mechanism between digital intelligence and physical machinery to guarantee the timely fault-detection,
condition-evaluation, and optimization of maintenance Borgi et al. (2017). Scalability, interoperability, and real-time
responsiveness are the characteristics of the modular design to promote the ecosystem in diverse digital printing
environments. The Physical Layer is in the bottom level and it involves the main elements of the digital printer, which
are printheads, drive systems, thermal devices, and ink distribution systems. The embedded smart sensors of each
subsystem contain temperature, vibration, acoustic signature, current draw, humidity, and nozzle performance
measurements Cao et al. (2022). All these points are a representation of the dynamic health of the machine. Data
Acquisition and Edge Layer are subsequently above Data Acquisition and Edge Layer that serves as a interface between
physical equipment and analytical infrastructure. In this case, edge gateways that have lightweight processors are used
to filter data, suppress noise, and detect local anomalies with the help of rule-based and Al-assisted frameworks Nasir et
al. (2020). This will guarantee that it is the only features that are valuable and relevant to be relayed to the cloud and
will minimize bandwidth consumption and latency. The ecosystem is based on the Cloud Analytics Layer that is the
computation core. The stream of incoming data is combined into a single central data lake or time-series database, on
which training, inference, and visualization of models take place. More sophisticated machine learning neural networks,
including convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and gradient boosting
models, are used to identify the correlations between multi-sensors to predict the probability of a fault and determine
the Remaining Useful Life (RUL) of a component Deloitte Touche Tohmatsu Limited (2015), Diaz et al. (2017). At the
same time, a Digital Twin Simulation Module is a simulation of the state of the physical printer with a model in the virtual
environment, whose parameters are constantly updated using real sensor data. With this digital twin, it is possible to
analyze the effects of a scenario on the system in the event of failure simulation, and optimize predictive control, and
enable engineers to evaluate the possible effect of maintenance actions before they are implemented.
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Figure 2 Layered Data Flow in Predictive Maintenance Ecosystem for Digital Printing Equipment

On top of the analytical layer is the Decision Support and Visualization Layer which is the human-machine interface
of actionable insights as depicted in Figure 2. The maintenance dashboard takes condition indices, the degradation
curves and predictive alerts and presents them on a simple visual representation that can be accessed by operators and
engineers Cinar et al. (2020). The work orders, spare parts requests and maintenance logs are produced automatically
with integration with the Manufacturing Execution Systems (MES) or Enterprise Resource Planning (ERP) platforms.
Such a smooth data stream allows making decisions in closed loops - in other words, the Al-based predictions have a
direct impact on the operational planning and resource scheduling. Also, alerting can be dynamically set, responding to
the dynamism of operating loads and the intensity of machine use, generating a smart and flexible maintenance
environment Han et al. (2021). The architecture design will be done in a way that makes it operationally sound by
integrating cybersecurity, such as encrypted data communication protocols (e.g.,, OPC-UA, MQTT with TLS), access
control layers, and data integrity checks to protect sensitive machine data. In addition, standardized data format (e.g. ISO
13374 and ISA-95) interoperability increases compatibility between heterogeneous printing systems and maintenance
systems. Combining edge-cloud orchestration allows making the most critical decisions locally, such as emergency
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shutdowns or instant fault isolations, and doing the strategic analytics and optimization centrally in the cloud Hakeem
etal. (2020). This fused intelligence solution is the best way to achieve speed and computational efficiency.

The predictive maintenance structure creates a self-learning, dynamic and smart architecture that keeps
progressing with the behavior of the machine, as well as environmental changes. The system converts the original sensor
signals into practical knowledge, guarantees the quality of prints, minimized downtime, and sustainability of business in
the contemporary digital printing companies by integrating Al-based analytics with physical expertise Cinar etal. (2020).

3. DATA MODELING AND ANOMALY DETECTION FRAMEWORK

The analytics of the predictive maintenance ecosystem of digital printing equipment is the data modeling and
anomaly detection framework. Its main purpose is to convert raw and non-homogenous sensor signals to structured,
interpretable and predictive attributes that can detect abnormalities in normal functioning behavior. The framework
uses a mixture of statistical modelling, signal processing and machine learning to model the nonlinear interaction
between the complex mechanisms which represent the mechanical, thermal, as well as ink-flow processes in
contemporary printing systems Ayvaz and Alpay (2021). The edge gateway takes continuous data streams at the first
stage based on temperature, vibration, acoustic, and optical sensors. Such signals are preprocessed at first and this
involves denoising, resampling, and normalization, to remove noise and outliers in the environment. Temporal
interpolation or to Kalman-based estimators are used to impute missing or inconsistent values in order to maintain the
continuity of time-series. The resulting signal (x(t)) is then split into frequency-domain expressions through Fast Fourier
Transform (FFT) or Wavelet Transforms, which allow the extraction of signal elements like Root Mean Square (RMS),
kurtosis and spectral entropy, which are quantitative measures of component wear and instability. The RMS
mathematically is as:

RMS = N1i = 1)Nxi2
where the kurtosis, which is a parameter of impulsive vibration, is calculated as:
K = 04N1Yi = 1N(xi — x)4

where mean and standard deviation of the signal are represented by the mean and standard deviation respectively.
The combination of these indicators can be used as a warning of abnormalities like nozzle jamming, imbalanced bearings
or roller misalignment. After some features have been extracted, the framework uses both unsupervised and supervised
algorithms by applying machine learning-based anomaly detection. When there are labeled fault data, classifiers like a
Random Forests (RF) and Support Vector Machines (SVM) are utilized in differentiating between healthy and degraded
conditions. In self-managed conditions, like usually found in new equipment, an Autoencoder, Isolation Forest, or a One-
Class SVM is trained to learn the normal condition of the working manifold and indicate conditions that are beyond
adaptive limits. At is the anomaly score of the specific observation and its value is:

At=lIxt-f(xt)|]

This is where (f(xt)) is the re-creation of the model of how the model anticipates behavior. Increasing (At) values
are the evidence of unhealthy performance, which generates real-time alerts. A hybrid CNN-LSTM architecture is also
used to improve the time accuracy of sequential features learning. The CNN block elicits spatial patterns of sensor
modalities, and the Long-term temporal dependency is obtained through the LSTM, which would allow proper
Remaining Useful Life (RUL) estimation. The degradation curve ( D(t) ) generated by the model implies the likelihood of
a component failure during a specified time period, hence informing the maintenance planning.

The digital twin simulation combines all model outputs and anomalies that are predicted are reflected in a virtual
copy of the printer to be checked and analyzed. The system also self-trains, with feedback of real maintenance results,
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so adaptive learning and false alarm reduction is provided. This framework combines statistical accuracy and neural
generalization so as to have strong fault detection through a variety of printing environments.

4. MACHINE LEARNING AND PROGNOSTIC ALGORITHMS

The intelligence system of the predictive maintenance system is composed of machine learning and prognostic
algorithms, which process sensor-based features into actionable information to predict failures, analyze component
degradation and Remaining Useful Life (RUL). These algorithms make possible autonomous pattern discovery and fault
predicting in the nonlinear, dynamic, operational space of digital printing machines. The framework combines classical
machine learning frameworks and deep learning architectures in order to be robust to both stationary and non-
stationary environments. On the first level of predictive intelligence, the supervised learning algorithms are
implemented in the classification of conditions and fault detection. Random Forest (RF), Support Vector Machine (SVM)
and Gradient Boosting Regressor (GBR) are the techniques that are used to analyze labeled data, which consists of past
sensor measurements and future maintenance results. These algorithms are most effective when approaching
multidimensional data and there are physical, acoustic and optical signals which have a combined effect on the health
condition of the system. To give an example, SVMs use hyperplane optimization to differentiate between healthy and
faulty states in the high-dimensional feature space whereas the random forests ensembles enhance the robustness of
fault classification using bagging and majority voting. The probabilities of the outputs of these models are the
intermediate prognostic health indices that drive the upper-order prognostic layer. The predictive maintenance system
builds upon deep neural network and CNN Long Short-Term Memory (CNNLSTM) hybrid is used as its template to model
intricate temporal relationships and nonlinear degradation patterns. The CNN element carries out the spatial feature
extraction through the apprentice of acquiring local dependencies and texture change in multi sensor data maps. The
convolutional kernels detect characteristic patterns of signals related to the emergent faults, e.g. clogging nozzle or
misalignment. The feature maps that have been extracted are then consecutively fed through the LSTM network, which
learns long-term temporal correlations and memory effects that time-series sensor data is susceptible to. This hybrid
method has better generalization performance and stability over time than individual feed forward networks. Prognostic
modeling procedure entails the prediction of the degradation path and forecasting the RUL of the critical elements. The
LSTM network gives a sequence of degradation states (D(t)) in which the probability of survival at each time (P{surv}(t))
is given. The RUL can then be developed to be:

RUL = [ tOtfPsurv(t)dt

where (t0) and (tf) represent the initial and failure thresholds respectively. Such probabilistic estimation enables
the maintenance planners to plan interventions in advance and avoid unplanned downtime as well as overheads of the
maintenance. Additionally, CNNLSTM predictions are more interpretable and accurate in localizing faults when they are
fused with ensemble diagnostics with rules. Another innovation under this system is the combination of the
Autoencoder-based anomaly detection in continuous online learning. Autoencoders are used to recreate normal
operating conditions and calculate reconstruction error which is a measure of deviation. This, along with RUL estimation,
gives a two-dimensional fault space, severity vs. time-to-failure, which has the benefit of supporting adaptive
prioritization of alerts. In the model, periodic retraining is made with the help of incremental learning to take into
account the aging of machines and the changes in the environment, after which the accuracy remains stable without
complete retraining. In order to measure performance of the model, a number of important measures are used; Cross-
validation and confusion matrix analysis are used in order to measure model generalization under different regimes of
operation. The empirical assessment shows that the CNN-LSTM hybrid has a superior prediction of the fault and earlier
anomaly detection rate than the classical methods, which proves that it can be effectively used in the real-time in the
industry. This is a multilayered machine learning architecture that is a combination of interpretability, flexibility, and
predictive accuracy. It can determine the intrinsic indicators of component wear-and-tear by learning the intrinsic
signatures of component wear and tear, creating a data-driven basis of intelligent maintenance scheduling and quality
control in future generation digital printing ecosystems.
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5. DIGITAL TWIN SIMULATION FOR PREDICTIVE INSIGHTS

The implementation of the digital twin technology is a revolutionary move on the way of digital predictive
maintenance of digital printers. A digital twin is a virtual clone of a real-life object, which is constantly updated using
real-time information to reflect its behavior, performance, and dynamics of degradation. The digital twin forms a
cognitive layer in the predictive maintenance ecosystem that facilitates the linkage of machine intelligence and physical
processes so that engineers can see the health of the system, predict failures and make decisions about maintenance
without disruption to production. It is not only a situational awareness technology, but it also offers a high-fidelity
sandbox that can be used to test scenarios and continually improve the system. The digital twin simulation architecture
of predictive maintenance is designed to include three main elements, namely, data fusion, behavioral modeling, and
decision feedback. Multi-source sensor data, which includes thermal data, vibration data, acoustic data, and optical data,
are processed in the data fusion level based on the [oT layer of the printing machine. These streams of data are matched
by timestamps and are normalized by means of the communication protocols, including MQTT and OPC-UA. This real
time synchronization will make sure that the virtual model is a real time reflection of the existing state of the physical
printer. The behavioral modeling phase is based on the use of machine learning and physics-informed models that are
applied to model the dynamic response of the printer to operational stress, the wear of the components, and the changes
in the environment. The main physical subsystems, like inkjet nozzles, drive motors, and print rollers, are mathematically
modeled by way of differential equations with data-driven surrogates to show their performance development within
diverse load conditions like in Figure 3. These models receive features streams on a continuous basis at the edge and
cloud layers and compute degradation trajectories and re-compute the Remaining Useful Life (RUL) in real time. Such
synchronization enables the twin to emulate a failure situation in advance before it happens. As an example, the digital
twin can recreate the development of imbalance and forecast when a structure will break down when the level of
vibration, upon realization, reaches a predefined threshold, which would provide maintenance teams with a notice
period. The simulation results can be presented as health maps, degradation curves and time to failure projections that
are intuitive to use in decision support of maintenance scheduling.

Figure 3

Sensor Data

» Vibration Digital Twin Simulation Results
* Temperature

A = . + Degradation State
* Acoustic [ogNOSHC * RUL Estimation
. : —>
Optical " Alerts
Dag: Feature Virtual System
reams Model
iy |

Digital Printer

Predictive
Outputs

Decision & Predictive
Physical Feedback Outputs
System - .
T * Maintenance Planninng
* Operational Adjustmemts
* Updates

Figure 3 Digital Twin Framework for Predictive Maintenance

The last step of the cycle of digital twin is the decision feedback loop. In this case, the results of the simulation are
sent to the maintenance dashboard and processed with enterprise systems, including MES and ERP. The engineers are
able to estimate the cost, downtime, and risk of various scenarios that the engineer may want to consider by delaying a
maintenance task, replacing a particular component or even changing the operating parameters. This feedback loop
simulation-decision process will turn the digital twin into an adaptive learning mechanism that will change with history
of operation and improve predictive accuracy over time. Also, reinforcement learning agents may be implemented into
the twin to discover the optimal maintenance strategies on its own according to performance reward functions. In more
general terms, the usage of the digital twin simulation of predictive maintenance opens promising economic and
environmental advantages. It will minimize unexpected downtimes, it will maximize the use of spare parts and it will
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reduce the waste of materials- all towards the aim of sustainable manufacturing. In addition, the digital twin improves
the predictive model reliability by modeling degradation under diversified environmental and production conditions,
without having to conduct actual experiments. The result is a self-developing ecosystem of maintenance in which real
and virtual entities work in an undisturbed synergy providing predictive information, efficiency, and sustainability in
equipment.

6. PERFORMANCE EVALUATION AND KEY RESULTS

The predictive maintenance framework was evaluated in terms of performance to measure its effectiveness in fault
detection, prediction of degradation and optimization of maintenance of digital printing equipments. The metrics of
evaluation were formulated to measure model-level and system-level operational gains so that the offered solution could
meet the industry standards of reliability, speed, and cost-effectiveness of the solution. The predictive analytics engine,
which is the CNNLSTM hybrid model, showed to be more predictive than classical algorithms. The model was
experimented on labeled working data of 600 printing cycles, one of which was normal operating conditions and the
other was degraded operating conditions. The performance was evaluated with the help of key statistical measures, such
as Accuracy, Precision, Recall, F1-score, Root Mean Square Error (RMSE), and Coefficient of Determination (R 2).

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) R?(RUL) RMSE (hrs)
Random Forest 88.6 87.9 86.4 87.1 0.87 5.2
SVM 85.4 84.8 83.2 84.0 0.82 6.0
CNN-LSTM (Proposed) 94.3 93.8 92.5 93.1 0.94 3.7

The confusion matrix analysis helped to verify that the false positives are low, which means that the false positives
are identified by the model successfully, and the false positives are minimized- which is a crucial requirement regarding
production efficiency. The predictive maintenance system at the system level yielded quantifiable results in the context
of predictable efficiency. The adoption of predictive analytics has led to the reduction of unplanned downtime by 32
percent, cut the maintenance costs by 24 percent, and decreased the amount of generated waste by 18 percent compared
to traditional time-based maintenance.

Figure 4
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Figure 4 Illustrates the RUL Prediction Curves

These findings were confirmed in a continuous monitoring procedure of three months. An increase of 27 percent in
Mean Time Between Failures (MTBF) was also realized in the system which is an indicator of improved equipment
reliability. Moreover, the overall equipment effectiveness (OEE) was increased by 15 percent when the system
dynamically planned interventions depending on predictive accuracy in terms of real-time health (monitoring) and
degradation mapping (data).
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Figure 5
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Figure 5 Presents A Health Index Trend

The CNNLSTM model had an accuracy of 94.3, precision of 93.8, recall of 92.5 and F1-score of 93.1 in classifying
types of faults like nozzle clogging, roller imbalance, and thermal overheating. To estimate RUL, the model was able to
achieve RMSE 3.7 hours and R 2 = 0.94, which is a lot better in comparison to the traditional model such as the Random
Forest model (R 2 =0.87) and SVM regression model (R 2 = 0.82). These findings endorse the idea that the deep learning
model has a good ability to capture the long-term time dependence in the temporal-to-failure prediction, which has low
variance.
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Figure 6 High Classification Precision Across Failure Categories.

Such visualizations restate the interpretability of model predictions and the applicability of such predictions in real-
time maintenance decision-making. The results of the experiment justify the strength of the suggested hybrid model and
the structure in general. The combination of edge analytics, digital twin simulation, and machine learning models gave

ShodhKosh: Journal of Visual and Performing Arts 443


https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Mithun Kumar S., Prakriti Kapoor, Ankesh Gupta, Piyush Pal, Vijayakumar K., Bharat Bhushan, and Sathyabalaji Kannan

way to an intelligent feedback loop that is dynamically adjusted to changes in how the operations take place. The
scalability of the model to a wide range of printer configurations is an indication that it can be expanded to wider use in
industrial manufacturing environments. In addition, decreased downtime and waste production are a direct contribution
to sustainable manufacturing goals, which means that the suggested system is aligned with Industry 4.0 and the principle
of a circular economy.

7. ECONOMIC AND SUSTAINABILITY ANALYSIS

The adoption of predictive maintenance (PDM) in digital printing machines is associated with a substantial
economic, environmental and operational sustainability by changing the maintenance to a cost center to an asset-
management operation. This combination of IoT sensing, Al-based prognostics, and simulation of the digital twin makes
the data-centric decisions reduce wastage, optimize the use of components, and increase the life of equipment in general.
This part assesses the economic performance of the proposed system in terms of cost savings, productivity gains and
sustainability results during the period of the experiment.

7.1. ECONOMIC IMPACT AND COST OPTIMIZATION

The proposed CNNLSTM based framework introduced during the 3 month operational evaluation showed that total
maintenance expenditure was reduced by 24% due to the early fault detection and condition-based interventions. The
system also cut down the Mean Time to Repair (MTTR) by 20% due to the pre-emptive discovery of the fault locations
and the level of severity. Consequently, the service engineers could plan the interventions in an efficient manner, which
reduced the labor expenses and downtime.

This selective maintenance approach led to an average saving of 2.3 lakh per production line per quarter in a
medium scale digital printing facility. The inventory optimization also led to a reduction of the holding cost of spares by
15 per cent since the procurement was not determined by the set maintenance timetables but by the anticipatory alerts.
Such findings can be compared to international standards of industrial IoT implementation and indicate that predictive
maintenance is 35x ROl in the first year of implementation.

7.2. PRODUCTIVITY AND RESOURCE UTILIZATION EFFICIENCY

Predictive maintenance also improves the continuity of production as there are almost zero unplanned
interruptions. This decrease in unplanned downtime by 32% equated to about 46 more productive hours every month
that directly enhanced throughput and the delivery timelines to clients.

Overall Equipment Effectiveness (OEE) increased by 15 percent, triggered by an increase in availability and a steady
quality of prints. Additionally, the scrap and rework rates were lower than before since the problem of nozzle
misalignment was identified at an earlier stage and the viscosity of the ink deviations were noted, this increased the yield
by 8 percent, which is a very important KPI in high volume printing processes. All these performance improvements help
to increase the operational efficiency and asset utilization, which leads to the long-term profitability and competitive
advantage.

7.3. ENVIRONMENTAL AND SUSTAINABILITY BENEFITS

In addition to financial performance, predictive maintenance facilitates the environmental sustainability objectives
of the printing industry in terms of less energy consumption, less material waste, and less carbon footprint. The real-
time fault detection was used to allow the elimination of excessive energy consumption due to overloaded motors and
misalignment of components, which saved an estimated 11% of energy. The 18 percent decrease in the ink and substrate
wastage did not only reduce the operation cost, but also added to the reduced emissions in the production and disposal
of ink.

The adaptive learning of maintenance schedules through the implementation of Al-based optimization and the use
of a digital twin simulation has the capacity to improve on maintenance schedules over time, causing minimal
environmental impact. Moreover, the decreased necessity of emergency parts deliveries, unplanned visits of technicians
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will indirectly lower the number of logistic-related emissions, which will further make the industrial supply chain
greener.

Predictive maintenance has become a key to the long-term sustainability of industries and their ability to compete
in the digital age due to the combination of cost reductions, productivity gains, and environmental friendliness.

8. CONCLUSION

This paper has proposed a complete predictive maintenance system to be applied to digital printing machines, which
combines IoT-enabled sensors, machine learning analytics, and digital twin simulation to realize intelligent and data-
driven maintenance processes. The hybrid CNN-LSTM model proposed here showed a higher accuracy (94.3%) and
reliability (R 2 = 0.94) in forecasting faults and the Remaining Useful Life (R U L) as compared to the conventional
methods like SVM and the Random Forest. Combining edge processing with cloud analytics was able to provide real-time
health monitoring, early fault detection, as well as proactive decision-making in a closed-loop feedback system. Physical
verification of its benefits was seen in tangible savings in operational and economic performance in the form of lessening
of down-time by 32 percent, lessening of upkeep expenses by 24 percent, and decreased generation of waste by 18
percent, as well as in enhancing the Overall Equipment Effectiveness by 15 percent. The combination of a digital twin
enabled the ongoing alignment of the physical and virtual systems of the printers, which made the simulation accurate,
dynamic alert generation, and refinement of the model adaptive. Beyond the performance improvement, the framework
contributed to sustainability through better resource exploitation, minimizing the energy usage, and longer component
life cycles, which is in line with global Industry 4.0 and the environment goal. The next steps in work will include
federated predictive analytics, explainable Al, and standardization of the PdM protocols to the cross-platform
interoperability of digital printing networks.
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