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S Sound classification has become an important element in contemporary creative practice,
updates in digital art, interactive installation, performance design and multimedia storytelling.
For art students, it not only equips a technological basis but also a creative toolkit to
design novel expressive modality through neural network understanding of sound: his
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1. INTRODUCTION

Sound has always been one of those materials that have been central in the artistic expression. With the growing
transformation of the arts into the digital and interactive realm, machine listening is a vital question for perceiving the
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Neural Networks in Sound Classification for Art Students

actual nature of what is being heard. Neural networks have changed the way that sound can be analyzed Mnasri et al.
(2022), classed and integrated into creative systems. Art students are encouraged to learn how these models "listen" in
order to create artworks that are intelligent, affective, and may even play with the world of sound: Suffice it to say that
at the heart of neural sound classification is a simple concept: that machines learn patterns in sound much the way that
an artist might learn patterns in color, movement, gesture or narrative tone Madhu and Suresh (2023). A neural network
listens to the sound not as a continuous wave but as a structure that resembles a visual and is called mel-spectrogram,
representing how the frequency energy changes over time. To a machine, this spectrogram appears as a colorful weaved
cloth; to an artist, this looks like a hybrid painting of rhythm and texture Inik (2023). This representation forms the basis
on which neural networks form an understanding of the sound categories like ambience, speech, emotion, texture or
musical style. Modern neural sound classifiers usually consist of three processing stages Demir et al. (2020).

Figure 1
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Figure 1 Sound Classification Workflow using Neural Network Audio Pipeline

They are like image matching engines. From here, Long Short-Term Memory networks (LSTM) analyze the
development of these textures, and representations of sound, and in turn the swell of sound, its decay, its pacing, its
emotional momentum are all embedded--a dynamic representation can be seen in Figure 1. Transformer attention
mechanisms bring the attention to the most important moments in the sound, and focus the network attention over
emotional highs or subtle transitions used to provide emotional weight Ahmed et al. (2020). Together, these elements
comprise a rich listening system which emulates both analytical and instinctive elements of human hearing. Not only the
importance of neural sound classification, but its value to an art student is shown far beyond technical eloquence. An
understanding of such systems attracts new forms of creative experimentation Sivaraman et al. (2021). A neural network
should be able to classify the mood of a performer's voice and thus cause changes in the light or visual projections. It is
able to detect environmental textures: wind, traffic, ocean waves; helping to drive generative compositions.
Technological options enable the interactive artworks to grow in time, assigning expressive aspects to the dancer's
breath or the articulation of the musician. As students learn to work with machine listeners they develop a greater
understanding of sound as a matter that is not only mediated by human intuition, but algorithmic interpretation Dang
(2022).

This paper introduces the principles of neural network-based sound classification by considering the point of view
of artistic practice, as a conceptual framework for hybrid CNN-LSTM-Transformer architectures Guzhov etal. (2021). By
reduction of technical underpinnings and creative relevancy, the aim is to educate art students about how neural systems
hear, interpret and classify sound. In doing so, this work is devoted to promoting the integration of computational
listening into arts education in the 21st century so that the next generation of artists can create expressive, adaptive and
emotionally intelligent sound-based works of art.

2. BACKGROUND AND CONCEPTUAL FOUNDATIONS

Sound classification is located on the interface between the artistic perception and the computational analysis. To
appreciate how the neural networks learn how to interpret audio, the art students must first be able to understand how
humans perceive sound, and how they translate their perception into structured information. Artists are often intuitive
classifiers of sound - categorizing a voice as anxious or at peace, for example, or describing a sound as metallic or soft, or
picking up on emotional charge in a changing rhythm. Neural networks are a similar kind of task but are based on
mathematics instead of intuition and learn to spot patterns using large collections of labeled audio Mulla et al. (2024).
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This section provides the conceptual background on how neural systems and human listeners are able to find common
ground. In artistic contexts sound has a lot of symbolic, emotional and experiential meaning. Yet these symbolic and
emotional characteristics are also characterized by quantifiable acoustic properties: distributions of tones - their
frequencies, dynamics, harmonic composition, and temporal variations of tone amplitudes Triantafyllopoulos et al.
(2021). Neural networks use these features that can be measured to categorize sound like emotion, texture, timbre, or
scene. The first conceptual pillar is good as a time-frequency structure. Unlike the hearing human listener, machines
need a visual-like representation in which both time and frequency are simultaneous. The mel-spectrogram, which is
used so much in modern deep learning research and in the model uploaded of emotional audio, is a transformation of
the raw waveforms into colorful patterns of color and intensity. High frequencies are stretched out vertically, low
frequencies are concentrated near the bottom and temporal variations move horizontally. This Being becomes an
equivalent of a chart of the behaviour of sounds. For art students, the mel-spectrogram is a starting point: it converts
sound into a representational form that is very well suited to artistic perception, just as a dynamic abstract painting
Eskimez (2022).

The second basic concept is recognition of pattern on sound. Neural networks are very good at finding recurring
shapes and textures in spectrograms. In addition, CNNs capture low-level visual details by recognizing basic motives on
the frequency bands linked to timbral patterns and/or expressive gestures Verbitskiy et al. (2022). Features learned
from the surface of touch usually resemble calligraphic strokes or repeating fingerprints. LSTMs take this pattern
recognition for more extended periods of time to make sense of how sound morphs or peaks or decays. They are able to
capture the emotional flow of audio which is the way speech builds emotion or music builds to climax. We further
incorporate an attention mechanism at the final stage, in order to select for the most informative part of the
representation with the most expressive power Han (2020). This reflects the principle of artistic listening, whereby one's
attention is expected to concentrate the most around meaningful sonic moments.

3. NEURAL NETWORK ARCHITECTURE FOR SOUND CLASSIFICATION

Designing a Neural Network that can classify sound for artistic uses requires the understanding of how various
computational layers work together to understand audio similarly to how a human would listen to it. The functional
concept is quite simple, underpinning the whole process is a complex math, but the idea is quite straightforward: each
layer of the neural network picks up different type of meaning of the sound. Drawing on the hybrid CNN-LSTM-
Transformer approach for emotional sound mapping at the cutting edge of modern technology, the following section
elaborates upon the architecture in a way that is accessible to students in the arts today and which specifies the
contribution of each component to the creative possibilities Orken et al. (2022). The architecture starts with audio pre-
processing, in which the sound in the raw format is approximated into mel-spectrogram, which is a graphical
representation of how the energy at each frequency behaves over time. This transformation is necessary since then
neural networks for image processing can analyze sound as if it were a textured surface that moves about. For those
students who are already familiar with the visual composition, the mel-spectrogram is an intuitive connector in terms of
how students can understand how machines perceive sound patterns in a structured image-like representation. Once
the sound is represented in a visual way, model goes in the Convolutional Neural Network (CNN) phase. CNNs are like
super sensitive pattern recognisers which scan the spectrogram in order to find tiny yet significant details Adusumalli
et al. (2025). They respond to such features as sharp transients, smooth gradients, harmonic clusters and rhythmic
textures. In terms of artistic impression, CNNs interpret the "brushstrokes" of the sound and capture its local visual
patterns and convert them into feature maps Sultana et al. (2025). These maps are the foundations of machine listening,
and are maps of the textures and colors of the soundscape.

ShodhKosh: Journal of Visual and Performing Arts 289


https://www.granthaalayahpublication.org/Arts-Journal/index.php/ShodhKosh

Neural Networks in Sound Classification for Art Students

Figure 2
Data Representation Emotion
& Feature Spaces Mapping

-\ )

Neural Network :
= Spectrogram Categqncal
E Emotion
Audio Input Mappmg
—_— MFCCS L] L) L]
» ______ Chroma | —p e &
features S
B —

Continuous
Emotion
Mapping

Attention
Layer Arousal

Figure 2 Neural Network for Sound Emotion Mapping
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From here the architecture enters the Long Short-Term Memory (LSTM) network which is specialized for
understanding the time. Similar to how a musician or performer can feel a sense of movement through time, they learn
how to sense emotional arcs, rhythmic pacing, dynamic flow, and the like. For instance, a rising pitch contour can be
interpreted by the LSTM as indicating a tense movement, a drawing out of a tone as indicating a soothing movement. In
artistic installations or creative Al tools this temporal sensibility can enable the system to interact in a dynamic way with
any kind of live performance or sound inputs, as shown in Figure 2. The next layer then introduces Transformer based
attention mechanisms, which provide the model with a sort of attention or selective listening capability. Attention
computes the relative weight of different elements of the sound to focus on based on which part of the sound is most
important in determining the classification - the higher the weight, the more emotionally rich or expressively significant
the moment was. This is similar to the way humans tend to concentrate on interesting sonic information - a sudden
breath, a coruscating guitar note, or a sudden change of tone. Other, more socially pleasurable applications also result;
in creative applications, attention layers enable neural systems to yield more subtle and expressive responses, making
the neural interpretation a more appropriate match to the aesthetic accent.

The combined features from CNNs, LSTms and attention mechanisms are passed through dense projection layers to
come up with the final classification. These outputs can be specific to emotional categories, sound textures,
environmental tags or artistic labels set by the student/designer. What makes this architecture especially powerful is
that it is flexible, in that the same structure can be used to classify artistic emotions in spoken word, identify textures in
field recordings or distinguish gestures in experimental sound performances.

4. PROPOSED NEURAL ACOUSTIC PATTERN EXTRACTOR (NAPE)

The proposed Sound Emotion Mapping Neural Network architecture has been designed in a way that it learns the
emotional cues directly from the raw audio and maps them to a categorical and continuous affective representation. This
neural network combines multiple deep learning elements that include feature space transformations, CNT and LSTM
neural encoder - a combination, a transformer-based attention mechanism, and finally, the latent emotion projection
module to come up with reliable and interpretable emotion outputs. Their central goal is to use a combination of
strengths of spatial representation, temporal representation and contextual representation to increase accuracy,
generalization across speakers and environments, and sensitivity to the subtle differences in emotional variation
occurring in the speech and other types of acoustic signals.

Step -1] Inputs and Front-End: Preprocess audio
Raw waveform x(t)) sampled at fs. Frame with window w(-)(length L, hop H):

x(t) » ZZZ via STFT —» Mel - log — IN.
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The pipeline starts by transforming the raw audio signals into Mel-Spectrograms which are used to get a
perceptually synchronized time-frequency representation.

Xxn[m] = x[m+nHlw[m],m=0,..,L —1)
Mi(t,m) = fYHm(f)Si(t,f)(m =1, ...,M)
Step -2] STFT and magnitude spectrogram

j2mkm
L

STFT(k,n) = m = 0}L — 1xn[m]e ,S(k,n) =| STFT(k,n) |

Mel projection (filter bank Hm(k) =1..M):
S~(m,n) = kYHm(k)S(k,n)
Log compression and normalization:
Z(n,m) = IN(log(S§~(m,n) + €))
Step -3] CNN Feature Extractor

For block¢=1..Lct=1..L,=1..Lc:
F(&) = ¢ (BN(W() + F(£ - 1))),F(0) = Z

with 2-D convolution *, ReLU ¢, batch-norm BN, and (optional) pooling over frequency. Flatten along frequency to
get a frame sequence

H(0) = FlattenFreq(F(Lc)) € RT x dO0.

To learn the representation further, the log-mel energy is also processed by the model, allowing the model to better
compress the dynamic range and be noise resilient.

Step -4] LSTM Temporal Encoder (sequence dynamics)
For time t=1.....T
itotct = o(Wiht — 1 + UiHt(0) + bi),
ft=oWfht —1+ UfHt(0) + bf),

0t = a(Woht — 1+ UoHt(0) + bo),

ct—1+it ® c~t, ht = ot © tanh(ct)
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Collect H = {ht}t = 1T € RT X dh

Step -5] Flatten to sequence: F(Lc) » H(0)F*{(L_c)} \mapsto H*{(0)}F (Lc) - H(0).
Step -6] Transformer: H = YH \mapstoYH » Y (MHSA + FFN + residual + LN).

Add positional encoding P and form U=H+P, For multi-head h=1..H
Qh = UWhQ,Kh = UWhK,Vh = UWhV
Attnh(U) = softmax(dkQhKhT)V
U = Concath(Attnh(U))WO

Step -7] Temporal attention pooling: : Y = zY \mapsto zY¥ - z.
Use EMA, Layer Norm and Feed Forward normalization FLN:

U*x=LNU+U~),Y =LN(U *+FFN (U %))
Temporal pooling with learned attention weights at.
at = Yi = 1T exp(wTyi) exp(wTyt),z =t = 1) .Tatyt € Rdz
Step -8] Dual Heads (classification + optional V-A regression)
Heads: z » pz \mapsto pz » p (and v*, a”v",a” if used).
Classifier over CCC classes:’
p = softmax(Wcz + bc),y = argcmaxpc
(Optional) Valence-Arousal regression:

v=tanh (T2 4 b)), e~ (waTz + ba)

Step -9] Losses and Training Objective

e Cross-entropy for labels y:
LCE = —c = 1},C1[y = c]logpc
e MSE for valence/arousal targets (v,a):
LVA=[w"")2+ (a%)2

e Multi-task total loss (weights A€[0,1]):
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L=ALCE+ (1 —-2)LVA+y2(0)

Step -10] Inference: class y* = arg max p (and continuous v*, a*{vH{a}v*, a’).

5. DATASET USED FOR ANALYSIS

The proposed Sound Emotion Mapping Neural Network was tested with three popular emotional speech data sets
selected for their complementary qualities in terms of acoustic quality, expressive variation and emotional structure.
Since the RAVDESS dataset consists of 1,440 English samples recorded in the studio by 24 actors who articulated eight
emotions with great clarity, it is a perfect dataset to learn clean spectral and prosodic features. EMO-DB includes 535
German utterances by 10 actors from seven well-defined emotional categories in order to provide a powerful expressive
contrast and an interesting linguistic variety that also enhances the generalization of a model. In order to capture more
natural and continuous dynamics of emotions, IEMOCAP data set provides over 12,000 conversational audio segments
with both (categorical) labels and (valence, arousal) scores, which help the network to learn fine-grained affective
patterns and provide a continuous emotion regression.

Table 1
Table 1 Sample Data from Each Dataset (Illustrative Example)

Dataset Sample ID Transcript / Description Emotion Label Duration (sec
RAVDESS RAV_03_12 “Kids are talking by the door.”

RAVDESS RAV_11.07 “The dog sat on the street.”
EMO_05_b02 Neutral German sentence
EMO-DB EMO_07_f10 Short acted German utterance Disgust 2.1

IEMOCAP IEM_45_M04 Dialogue segment from session 4 Frustrated
IEMOCAP [EM_32_F02 Conversational snippet Valence = 2.8, Arousal = 4.1 3.7

In combination these datasets will represent a balanced mix of controlled, expressive and spontaneous emotion
speech that is required to create a robust and interpretable emotion classification model.

6. INTERPRETATION AND ANALYSIS

The results of the Sound Emotion Mapping Neural Network identify some rather meaningful patterns that can help
explain why the architecture is consistently effective across different datasets of emotional speech. This combination of
CNN, LSTM, and attention from transformers combine the listening process into a multilayer, making the network able
to view sound as humans would in terms of reacting to emotions. By analyzing the model's predictions, attention maps,
confusion trends and regression outputs we can better understand not only how the Neural system is arriving at its
decisions, but also which acoustic cues constitute the highest weight, expressive importance in the recognition of
emotion. One of the lessons that can be learned is that it shows excellent classification performance on various datasets
well beyond the RAVDESS and EMO-DB. Neural network can consistently identify emotions with definite spectral
signatures such as anger, happiness and fear with certainty. This reliability is a good indication that the CNN layers
manage to extract critical local patterns such as sharp edges of spectra, periodic bursts of energy and changes in
harmonic intensity. These properties seem to establish solid emotional fingerprints, so that the similar acoustic
expressions are grouped with minimum overlaps by the model. On the other hand, emotions that have naturally subtle
or overlapping acoustic qualities such as calmness and neutrality result in slightly higher rates of confusion. This is a
limitation not only of the model but of the acoustic space itself in which some emotions are determined more by
psychological than by measurable frequency or temporal structure.
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Figure 3 Confusion Matrix Showing Model Emotion Classification Accuracy.

The given matrix can be understood as the visualization of the ability of the neural network to differentiate between
emotional categories. Bright diagonal blocks represent samples that were correctly classified and the off-diagonal
elements represent confusion between similar emotions as shown in Figure 3. The pattern indicates high accuracy and
little misclassification with most of the errors occurring between acoustically overlapping categories. The analysis is
enriched with a look to the behavior of the network in continuous valence arousal prediction. The model shows good
intuition about the emotional geometry involved: the high arousal sounds (tense, energetic, forceful) are clustered well
in the top of the prediction plane and the low valence (subdued) emotional states congregate to the lower left of the
model. This suggests that it is likely the combination of the temporal modeling of LSTMs and the refinement based on
attention that enables the network to capture slow building up of emotions as well as abrupt expressive cues.
Indicatively, the increasing pitch contours, and constant harmonic tension drive predictions to high arousal and
dampened energy and low-frequency focus, drive outputs to low valence, respectively. The fact that the network is
correlating with ground-truth annotations shows that the network is not just reacting to loudness or tempo but rather it
is learning more informative affective patterns in the acoustic signal.

Figure 4
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Figure 4 Predicted Emotions Plotted in Valence-Arousal Space.

This is a scatter plot of prediction of emotional states in the continuous affective space. Points scattered among
quadrants indicate that model captures high arousal as well as low valence emotions. The clustering trend shows high
affiliation between the predicted and true affective values. A focus on visualizations of weight also sheds more light on
the internal decision-making of the model. These maps show that the network is consistently emphasizing parts of the
segments where there have been breathy inflections, sharp changes in pitch, and harmonic transitions over parts of the
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audio that are simply the loudest. Such behavior reflects advanced sensitivity to expressive detail as it is seen in Figure
4 Transformer attention is effectively a spotlight, meaning that it identifies emotionally rich micro-moments in every
utterance. This interpretive transparency is of great additional value, particularly in creative or educational applications
for which understanding why the model is responding in particular ways is as important as the accuracy of the response.

Figure 5

Frequency Bins

Time Frames

Figure 5 Attention Heatmap Highlighting Emotionally Salient Audio Regions.

This heatmap shows the time-frequency areas that the neural network focuses on during the interpretation of
emotional stimuli. Salient emotional portions of the music are bright patches, like rises in pitch or harmonic tension,
breathy transitions. The heatmap shows that the Transformer layer assists the some subtle expressive details as depicted
in the Figure 5. Lastly, the findings of ablation confirm that the individual components of the network make a significant
contribution to performance. Removing LSTM layers interrupts the analysis of space and time, making them flattened
predications and having difficulties with emotions determined by small progression. Eliminating the attention layer
leads to a lower capability to weight important expressive cues, resulting in increased confusion in emotionally similar
categories. Such results confirm the hypothesis that emotion in sound is not supported by a single acoustic feature but
created by a system of patterns, spectral, temporal, and contextual, which demand a complex neural approach. Overall,
it can be seen through the interpretation of results that the proposed neural network is not only effective but also
perceptually aligned with the way the human eye (or ear in this case) interprets emotional sound. The depth of its
perception of texture, motion, and focus allows it to perceive emotion-related subtlety with great precision, and thus a
strong tool in emotion sensitive audio systems in both scientific and artistic applications.

7. CONCLUSION

The proposed Sound Emotion Mapping Neural Network shows impressive ability in learning emotional context from
raw audio signal using integrated CNN, LSTMs and Transformer attention model. It is found that the network succeeds
in capturing spectral textures, temporal evolution and contextual emphasis, and is able to correctly recognize categorical
emotions as well as is capable of predicting continuous valence-arousal with considerable accuracy across several
benchmark datasets. Its regular performance and decipherable patterns of attention demonstrate the emotional
meaning in sound is a result of a convergence between the local acoustic features and the larger expressive frameworks.
These results prove the usefulness of hybrid neural structures in emotional audio systems and outline their prospects of
uses in creative arts, human-computer interfaces, and affective technologies. Future work may explore the multimodal
interaction, the real time implementation and the adaptation to cross cultural emotional expression.
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