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The present paper deals with the determination of temperature, displacement and

(f,'},%cakté‘s" thermal stresses in a limiting thick circular plate with internal heat generation. A limiting

thick circular plate is subjected to arbitrary known interior temperature under steady

CorrespondingAuthor state, the fixed circular edge of limiting circular plate are thermally insulated and lower
Chetana Bhongade, surface of limiting circular plate is kept at zero temperature. Here we compute the effects
of internal heat generation in terms of stresses along radial direction and modify Kulkarni

DOI V. S. (2008). The governing heat conduction equation has been solved by the method of

integral transform technique. The results are obtained in a series form in terms of
Bessel’s functions. The results for stresses have been computed numerically and

illustrated graphically.
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1. INTRODUCTION

The thermoelastic problem consists of determination of the temperature of the heating medium, the heat flux on the
boundary surfaces of the limiting thick circular plate when the conditions of the displacement and stresses are known at
the some points of the limiting thick circular plate under consideration. Noda et al. (1989) discussed an analytical method
for an inverse problem of three dimensional transient thermoelasticity in a transversely isotropic solid by integral
transform technique with newly designed potential function and illustrated practical applicability of the method in
engineering problem. Kulkarni V. S. (2008) studied an inverse quasi static steady state thermal stresses in a thick circular
plate. Bhongade and Durge (2013) considered thick circular plate and discuss, effect of Michell function on steady state
behavior of thick circular plate, now here we consider a limiting thick circular plate with internal heat generation
subjected to arbitrary known interior temperature. Under steady state, the fixed circular edge of limiting thick circular
plate is thermally insulated, lower surface of limiting thick circular plate is at zero temperature and limiting thick circular
plate is subjected to arbitrary known interior temperature. Here we compute the effects of internal heat generation on
the limiting thick circular plate in terms of stresses along radial direction and we modify Kulkarni V. S. (2008). The
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governing heat conduction equation has been solved by the method of integral transform technique. The results are
obtained in a series form in terms of Bessel’s functions. A mathematical model has been constructed for limiting thick
circular plate with the help of numerical illustration by considering aluminum (pure) circular plate.

FORMULATION OF THE PROBLEM

Consider a limiting thick circular plate of thickness 2h defined by 0 <r<a,-h<z<h. Let the plate be subjected to
arbitrary known interior temperature f(r) within region-h<z<h. With circular surface r=a is thermally insulated and
lower surface z=-h is kept at zero temperature. Assume the boundary of a limiting thick circular plate is free from
traction. Under these prescribed conditions, the thermal steady state temperature, displacement and stresses in a
limiting thick circular plate with internal heat generation are required to be determined.

The differential equation governing the displacement potential function ¢(r,z) is given in Noda (2003) as

2
a¢+1a¢+ = Kt

r or az2

(1)

where K is the restraint coefficient and temperature change t =T — T; T; iis ambient temperature. Displacement
function ¢ is known as Goodier’s thermoelastic displacement potential.

The steady state temperature T(r, z)of the plate satisfying heat conduction equation as follows,

82T 1 9T 82T
—+——+

q
2249 _ 9
ar? r or azz+k

(2)

with the conditions

aT

5 =0at r=a, —h<z<h 3)

T=0atz=—h, 0<r<a 4)

T =f(@) (known)at z=§¢, —h<&<h0<r<a (5)

and

T = g(r) (unknown)at z=h, 0<r<a (6)

where k is the thermal conductivity of the material of the plate, q is internal heat generation.
The Michell’s function M must satisfy

V2VEIM =0 (7
where

a a2
a az2

2
2 92,1
arz = r

The components of the stresses are represented by the thermoelastic displacement potential ¢ and Michell’s
function M as

o = 26{22 — K+ Z|vveM - 22|} (8)

o9 =26 {232 - Kr+ - [vvim -1 2]} ©)

a,,zzc{;“’—KT+—[(2—u)viM—'3—’f} (10)
and

=26 {5+ pa-wvn - ) iy
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where G and v are the shear modulus and Poisson’s ratio respectively.

For traction free surface stress functions

Or=0,=0at r=a, —h<z<h (12)
Equations (1) to (12) constitute mathematical formulation of the problem.
Solution
Temperature change
To obtain the expression for temperature T (1, z), we introduce the finite Hankel transform
over the variable r and its inverse transform defined by [5] as
T(Bm2) = [y 1 Ko(Bm,7) T(r,2) dr (13)
T(r,z) = Em=1Ko(Bn.7) T (B, 2) (14)
. _ E Jo(BmT)
where Ko(Bin, 1) = — e (15)
B4, B2 ..... are roots of transcendental equation
(16)

]0 r(ﬂm“) =0

where ], (x) is Bessel function of the first kind of order n.

On applying the finite Hankel transform defined in the Eq. (13) and its inverse transform defined in Eq. (14) to the

Eg. (2), one obtains the expression for temperature as
sinh[Bm(z-4§)]
{ A =h) i Gprom

) 17)
¢ h[Bm(z+n)] (
~[ABn & = FB g + A(ﬁm.Z)}

_ Yo Efo(ﬁmr)
T(T, Z) N Zm=1 a Jo(Bma)

where F (f_m) is the Hankel transform of f(r) and A(_m,z) is particular integral of differential Eq.(2).
Michells function M
Now we select M which satisfy Eq. (7) is given by

B,, sinh[ B, (z + h)] 8
{+ Cpn B (z + h) cosh[ B, (z + 1) } (18)

0 V2 Jo(Bm™)
M=K Zm=1F(ﬁm) o ]E(ﬁma)

where B, and C,, are arbitrary functions.

Goodiers Thermoelastic Displacement Potential ¢(r,z)
Assuming the displacement function ¢(r,z) which satisfies Eq. (1) as

—Ky2_, V2 JoBmn
P 2) = Kim=1t T

_ 3y Sinh[Bm(z-9)]
X AG@ " R Gnni(gmeon o)

4B &) = F(B)) S P 4By, —h) ePa4)
Now using Egs. (17), (18) and (19) in Egs. (8), (9), (10) & (11), one obtains the expressions for stresses respectively

as
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V2

Irr _ o
= 20 Xm=1 a Jo(Bma)

- [ﬁm2 Ji' Bmr) + Jo (.er)]

o Sinh[Bm(z=9)] _ sin h[Bm(z+h)]
X |4 —h) T L 4 [F(B) = A(B, O] e ]

_[.Bm2 ]i(ﬁmr) AP, _h)eﬁM(Z+h) + Jo(Bm1) A(Brm, Z)]

B’ J1(Bmr)(z + h) sinh[ B,,(z + h) ]

+ B F (B G [[21} Jo(Bmr) + J1' (Bm1)1Bmcosh] B (z + h)]

+ B F(Bm) By J1' (Bm1) cosh[ B (z + h)]

‘\/E —_—

966 _ o N2
ra Zm:la/o(ﬁma)

[ B 282 1 1o (8]

.\ Sinh[Bm(z=§)] _ sin h[Bm(z+h)]
X A, —1) S PR 4 [F (B) = ABm, O S 2]

[3m —jl(ﬁr”mr) Ay, —h)ePmE) 4 1, (B 1) A(By, Z)]

Bn? 2L (7 4 1) sinh[ B (z + )

m” F(Bn)Com
P ) (20 B Jo(Br) + 22218, cosh[ By (z + )]

Ozz __ 0 ﬁ]o(ﬁmr) 2 _
x =26 Lim=1 aJo(Bma) (Bn® —1)

sin h[Bm(z—§)] sinh[Bm(z+h)]
X [A(ﬁm’ —h sinZ[(ﬁm+g)h] + [F(Bn) = A(Bm, O] Sin:-[(ﬁm"'élh]jl
+ B’ F(Bm) Cn( (1 — 20) cosh[ By (z + h)] = B (z + h) sinh[ B, (z + h))

Orz __ © — 2 M
7 =26 Yr=1(=Bn") a Jo(Bma)

cos h[Bm(z+h)]

X [4Gn, —h)w LFBn) = ABm O Gk Gprom

sin h[(Bm+E)h

+ A(B, —h)ePm*) — B SF () By sinh[ Bn(z + h)]

+ B F(Bn)Cm( (=2v) sinh[ B (2 + 1)] = B (2 + h) cosh[ B (z + 1) )

In order to satisfy condition (12), solving equations (20) and (23) for B_m and C_m one obtain,

B,,=0
and

Con= = (B’ 11" Brn@) + Jo(Bmn®)]

(20)

(21)

(22)

(23)
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_ sin h[Bm(z—§)] sin h[Bm(z+h)]
X |4 —h) TECEL 1 [F(B) = A(B, O] S o]

[+ B J1(Bm@)ABm, —h)e?Pm + o (B a)A(Bpm, h) (25)

Bmh J1' (Bma)sinh(2f,h)

where R = f,,°F(B,) [(ZV]() (Bma@) + J1' (Bna))cosh (2B,h)

2. SPECIAL CASE AND NUMERICAL CALCULATIONS

Setting
(1 f(r) = r?
a=1m, h =0.100000000015m
F( ﬁm) = To (3 [ajl(.ﬁma) 2]2 (ﬁma)]

@ q(r,z) = 6(r —rp)8(z — zo)

\/7 m
G Bn?) = [logr’ s 20 5 (r — 10)8(z — 20) dr’

\/_ 8(z—2o)

=2 JoBma) 7o Jo( BmTo)

where 6(r) is well known diract delta function of argument r.
1y = 0.5m,z, = 0.05m

3. MATERIAL PROPERTIES

The numerical calculation has been carried out for aluminum (pure) circular plate with the material properties
defined as

Thermal diffusivity a = o = 84.18x 107° m?s71,
Specific heat c, = 896 ] /kg,
Thermal conductivity £ =204.2 W/m K,
Shear modulus G = 25.5 G pa,
Poisson ratio 9 = 0.281.

4. ROOTS OF TRANSCENDENTAL EQUATION

The B, = 3.8317, B, = 7.0156, B3 = 10.1735, B, = 13.3237, Bs = 16.4706, B, = 19.6159 are the roots of transcendental
equation J,’(8,a) = 0. The numerical calculation and the graph has been carried out with the help of mathematical
software Mat lab.

5. DISCUSSION

In this problem, a limiting thick circular plate is considered which is subjected to arbitrary known interior
temperature and determined the expressions for temperature, displacement and stresses. Here we compute the effects
of internal heat generation in terms of stresses along radial direction by substituting q=0 in Egs. (17), (19), (20), (21),
(22),(23), (24) and (25) and we plotted the graphs for stresses for q=0 and q#0. As a special case mathematical model
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is constructed for f(r)=r"2 and performed numerical calculation by considering aluminum (pure) circular plate with the
material properties specified above.
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Figure 1 Radial stresses -/ for q = 0.

From figure 1, it is observed that the radial stresses % for ¢ = 0 are decreasing for 0.2 <r <04, 0.6 <r <0.8 and
increasing for 0.4 < r < 0.6 along radial direction.

Sigmart/K vs r

Sigmarr/K values
D
T
-
~

~zhi=-0.1, 0.05, 0, 0.05

0 01 02 0.3 04 05 06 0.7 0.8
r-values

Figure 2 Radial stresses “for q # 0.

From figure 2, it is observed that the radial stress G—I;r for q # 0 are increasing for 0.2 <r <0.4, 0.6 <r < and
decreasing for 0.4 <r < 0.6 alongradial direction. From figure 1 and 2 the overall behavior of the radial stresses G—; due
to internal heat generation is increasing and its nature is compressive along radial direction.
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Figure 3 Angular stresses —* for g = 0.
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From figure 3, it is observed that the angular stresses 0%9 for ¢ = 0 are decreasing for 0.2 <r < 0.4 and increasing
for 0.4 <r < 0.8 along radial direction.

Sigmatheta/i vs r
25
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0.
r-values
Figure 4 Angular stresses %for q * 0.

From figure 4, it is observed that the angular stresses G'%’ for g # 0 are decreasing for 0.2 < r < 0.4 and increasing for
0.4 <r < 0.6 and rapidly for 0.6 <r < 0.8 along radial direction.
From figure 3 and 4 due to internal heat generation the overall behavior of the angular stresses 6"?9 are increasing

and its nature is compressive along radial direction.
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Figure 5 Axial stresses *Z for q = 0.
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Figure 6 Axial stresses % for g # 0.
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From figure 5 and 6, it is observed that the axial stresses % are increasing for 0.2 <r <04, 0.6 <r <08 and
decreasing for0.4 < r < 0.6 along radial direction.

From figure 5 and 6 the overall behavior of the axial stresses % due to internal heat generation is tensile in nature
along radial direction.

Jel 10 Sigmarz/K vs rfor g=0

D
_
.

/‘“

Sigmarz/K values
.
-
;

b
r
//
.~/ /
: N\
\
\
A%

zhi= 01, -005,0,0.05

i ] 0.1 02 03 0.4 05 06 07 08
r-values

Figure 7 Stresses 2% for g = 0.

From figure 7, it is observed that the stresses % for ¢ = 0 are decreasing for 0 < r < 0.2,0.4 <r < 0.6 and increasing
for0.2 <r <04, 0.6 <r < 0.8alongradial direction.
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Figure 8 Stresses % for g # 0.

From figure 8, it is observed that the stress % for g # 0 are increasing for 0 <r < 0.2, 04 <r < 0.8 and decreasing
for 0.2 < r < 0.4 along radial direction.
From figure 7 and 8 the overall behavior of the stress G—Ir(z due to internal heat generation is increasing and its nature

is compressive along radial direction.

6. CONCLUSION
Due to internal heat generation the radial stresses G—;(r, the axial stresses%, the stressesc—liZ and the angular stresses"e?e
are increased along radial direction. The radial stresses, the angular stresses and the stresses are compressive in

nature whereas the axial stresses %are tensile in nature along radial direction.

Orz
K
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The results obtained here are useful in engineering problems particularly in the determination of state of stress in
a thick circular plate, base of furnace of boiler of a thermal power plant, gas power plant and the measurement of
aerodynamic heating.
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