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ABSTRACT 
For solving the problems related to prediction of time series data the Artificial 
Intelligence models i.e. Machine learning and deep learning are becoming popular. These 
models have been proven to deliver greater accuracy than traditional regression models. 
Among these, Recurrent Neural Networks (RNNs) with features (e.g. memory storage), 
such as Long Short-Term Memory (LSTM) networks, have proven to show a superior 
edge over models like Autoregressive Integrated Moving Average (ARIMA). LSTM 
networks are unique because they use special element namely "gates" which help them 
remember and process longer sequences of time series data.  
 
Based on hyper-parameter tuning, various LSTM model configurations are possible to be 
developed, each of which are designed to address specific prediction challenges and 
improve model performance. Thus, the key consideration is whether the elements of 
gates in LSTM networks alone are sufficient to deliver better predictions or if further 
training is necessary to enhance accuracy.  
 
The present study explores the performance of BiLSTMs in comparison of Stacked LSTMs, 
using stock price data from 10 companies listed on the National Stock Exchange of India. 
It exhibits the effect of bidirectional training in enhancing model precision. The results 
demonstrate that BiLSTMs, with their advanced training capabilities, provide 
significantly more accurate stock price forecasts compared to basic structure of LSTMs. 
However, it was also observed that BiLSTMs take longer to achieve stability compared to 
their unidirectional LSTM counterparts. 
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1. INTRODUCTION 
Prediction of time series data (e.g. stock prices/trend) is of utmost importance, yet it remains a complex and intricate 
task. The accuracy and effectiveness of various available forecasting models severely depend on the nature of dataset 
and its underlying context. There are various factors such as seasonality, unexpected events, economic disruptions, and 
organizational changes which significantly influence forecasting outcomes. These highly influencing aspects introduce 
variability, making accurate predictions even more challenging. 
 
Linear regression for creating the model and moving averages for predicting future values have been the common 
criteria used by tradition approaches to time series forecasting. One of the most widely used methods in this category is 
the Auto-Regressive Integrated Moving Average (ARIMA) model. Over time, various adaptations of ARIMA, such as 
Seasonal ARIMA (SARIMA) and ARIMA with explanatory variables (ARIMAX), have been developed. While these methods 
perform adequately for short-term forecasting, their accuracy declines substantially for long-term predictions due to 
their linear assumptions and limited flexibility. 
 
• The inherent limitations of the traditional time series forecasting models as suggested by various studies [6] can be 

listed as below:- 
• These models face challenges in modelling nonlinear interactions between variables due to their dependence on 

linear regression techniques. 
• They require adherence to strict statistical assumptions, such as constant variance and normality, for the results to 

remain valid and reliable. 
• Their predictive performance declines sharply when applied to long-term forecasts, limiting their utility in extended 

time horizons. 
• They often struggle to handle high-dimensional data effectively, making them less suitable for complex datasets with 

multiple influencing factors. 
• Their reliance on historical patterns makes them less adaptive to sudden shifts or anomalies in the data, such as 

economic shocks or unexpected events. 
 
In recent years, machine learning and deep learning have emerged as powerful tools for addressing the limitations of 
traditional forecasting techniques. Unlike model-driven approaches, these methods rely on data-driven processes to 
extract patterns and relationships from data. Depending on the problem domain, specific learning models can be tailored 
to suit the requirements. For example, convolutional neural networks (CNNs) excel in visual tasks such as image 
recognition, whereas recurrent neural networks (RNNs) are more suitable for sequential data, including time series 
forecasting. 
 
RNNs come in several variations, primarily distinguished by their ability to retain information from previous inputs. 
Standard RNNs, often referred to as "vanilla RNNs," struggle to remember past data, as they operate using feedforward 
mechanisms. This limitation is addressed by advanced RNN architectures such as Long Short-Term Memory (LSTM) 
networks. LSTMs are designed to model relationships between longer input and output sequences. They use specialized 
gates within their architecture to retain important past information while processing new data, enabling them to create 
more accurate models. These models, categorized as feedback-based mechanisms, process input data sequentially, 
typically from the beginning to the end of the sequence. 
 
The another variant of LSTM models is known as Bidirectional LSTMs (BiLSTMs) which extends the concept of feedback-
based mechanism by processing data in two directions—first from left to right and then from right to left. Moreover, as 
there could be user based tuning of hyper-parameters, various LSTM model configurations can be developed, each 
designed to address specific prediction challenges and improve model performance. 
 
Various Researches [1] have consistently shown that deep learning models, particularly LSTM networks, outperform 
traditional ARIMA-based approaches, especially for long-term forecasting tasks. While LSTM has demonstrated superior 
performance, some important question arises:  
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1. Can the predictive accuracy be further enhanced by incorporating further tuning of hyper-parameters?  
2. Could there be suggested improved variants of LSTM model for prediction of time series data with particular reference 

to stock prices data? 
3. Does the BiLSTMs, with their additional training capabilities, outperform standard unidirectional LSTMs? 
This exploration opens up possibilities for refining LSTM-based models and leveraging their capabilities to address the 

complexities of time series forecasting with greater precision. 
 
For exploring whether further tuning of hyper-parameters and incorporation of additional layers of training into the 
architecture of an LSTM improves its prediction, this paper explores the performance of Bidirectional LSTM (BiLSTM) 
and LSTM.  
 
In particular, we are interested in addressing the following research questions: 
1. Does the prediction accuracy improve when stock price data is analyzed in both directions (i.e., historical-to-current 

and current-to-historical) using LSTM and BiLSTM models? 
2. How do LSTM and BiLSTM architectures differ in processing and interpreting stock price data for forecasting 

purposes? 
3. Which architecture (LSTM or BiLSTM) achieves stability faster while predicting stock prices for companies listed on 

the National Stock Exchange of India? 
 
To address these research questions, this study conducts a series of experiments using stock price data from 10 
companies listed on the National Stock Exchange of India. The key contributions of this paper to the literature are as 
follows: 
 
1. Examine whether incorporating additional layers of training enhances the predictive accuracy of financial time series 

data, specifically stock price movements. 
2. Provide a comparative performance analysis of uni-directional LSTM and its extension, BiLSTM, in forecasting stock 

prices.  
3. Conduct a behavioural study of the learning processes in LSTM and BiLSTM architectures, focusing on their training 

mechanisms and data handling strategies. The findings reveal that BiLSTM models utilize a distinct training strategy, 
characterized by their ability to process smaller, more focused subsets of stock price data during training. This 
approach enhances their capacity to capture complex patterns in the data. Furthermore, while BiLSTMs exhibit 
superior predictive performance compared to uni-directional LSTMs, they require a longer training period to achieve 
stability.  

 
The organization of this paper is as follows: Section (2) provides an overview of relevant literature. Section (3) outlines 
the foundational concepts and mathematical formulations necessary for the study. The details on dataset used for the 
study, the raw-data descriptive statistics and their pictorial representation are provided in Section (4). Section (5) details 
regarding research methodology, algorithms and evaluation metrics used in the present study. Section (6) presents the 
experimental findings in detail. Finally, Section (7) concludes the study and highlights potential directions for future 
research. 
 

2. RELATED WORKS 
Time series forecasting traditional models specifically relied on Autoregressive Integrated Moving Average (ARIMA) and 
its extensions, such as Seasonal ARIMA (SARIMA) and ARIMA with Explanatory Variables (ARIMAX), Box and Jenkins [2]. 
Some authors Khashei and Bijari [3], Alonso and Garcia-Martos [4], Adebiyi et al. [5], have emphasised that the traditional 
methods of forecasting have long been utilized for addressing time series challenges. Researches have also shown some 
inherent drawbacks of using these regression-based approaches in prediction problems [6]. 
 
In recent years, machine learning techniques have emerged in various forms to tackle financial forecasting challenges, 
including efforts to predict stock prices, stock market directions and sudden market crashes etc., such as the 2007-08 
financial crisis. Artificial intelligence based Machine learning and deep learning methodologies have introduced 
innovative avenues for time series analysis.  
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For example, linear classifiers like logistic regression have been successfully applied to forecast the Indian stock market, 
Dutta et al. [15] and the S&P 500 index, Chen [16]. Prior to the rise of neural networks, more advanced methods like 
large-margin classifiers or Support Vector Machines (SVMs) were widely regarded as the most effective tools for 
prediction. SVMs utilize a kernel trick to map input data into a higher-dimensional space, making it linearly separable. 
Notable applications of SVMs include predicting the Korean composite stock price index [17] and the NIKKEI 225 index 
[18], where SVMs demonstrated superior performance compared to logistic regression, linear discriminant analysis, and 
even certain neural network models. 
 
Another widely used machine learning method, random forests, has been applied to stock market prediction problems. 
For instance, in Lauretto et al. [19], researchers analyzed the BM&F/BOVESPA stock market using various technical 
indicators such as simple and exponential moving averages, rate of change, and stochastic oscillators. 
 
Krauss et al. [7] applied various forecasting models, including deep learning, gradient-boosted trees, and random forests, 
to the S&P 500 index. They highlighted the challenges associated with training neural networks and other deep learning 
algorithms. Similarly, Lee and Yoo [8] implemented an RNN-based model for predicting stock returns, demonstrating the 
utility of RNNs in portfolio construction by fine-tuning return thresholds through internal layers. Fischera et al. [9] 
extended these efforts by utilizing financial data to explore prediction techniques. Studies [20] have shown that the 
exploding gradients problem can be solved by truncating/squashing the gradients [12]. 
 
Studies such as Kim and Moon [10] and Cui et al. [11] have examined the relative performance of LSTM and its 
bidirectional variant, BiLSTM. Kim and Moon observed that BiLSTM outperformed standard unidirectional LSTM models 
when applied to multivariate time series data. Similarly, Cui et al. [11] introduced an innovative stacked architecture that 
integrates bidirectional and unidirectional LSTMs for forecasting network-wide traffic speeds. Their findings revealed 
that this hybrid model exceeded the predictive capabilities of both standalone BiLSTM and uni-LSTM approaches. 
 
Studies such as Namini et al. [1] and N. Tavakoli [12] have been conducted where ARIMA and LSTM models were 
compared for their effectiveness in predicting financial and economic time series data.  
 
Based on the researches like Pang et al. [13] and scheduler [14] bidirectional training has shown substantial benefits in 
traditional prediction tasks, such as software vulnerability forecasting as shown in studies, its advantages in financial 
and economic time series modeling remain uncertain. This paper seeks to address this gap by investigating whether 
bidirectional learning enhances predictive accuracy for such data. 
 

3. FOUNDATIONAL CONCEPTS AND MATHEMATICAL FORMULATIONS 
3.1 LONG SHORT-TERM MEMORY (LSTM) 
Long Short-Term Memory (LSTM) models were introduced as an advanced variation of RNNs specifically designed to 
overcome this challenge of “Vanishing Gradient Problem” effectively. LSTM models enhance the memory capability of 
RNNs, allowing them to retain and learn long-term dependencies from input data. This improvement allows LSTMs to 
retain essential information for extended durations while offering advanced functionalities like reading, writing, and 
selectively erasing data from their memory cells. These capabilities ensure that the network can effectively manage and 
utilize both recent and past information for more accurate predictions in sequential data. 
 
The memory component in LSTMs is referred to as a "gated cell," which derives its name from the mechanism that 
controls the flow of information. These gates determine whether information should be retained or discarded based on 
specific criteria, ensuring optimal memory management. This gating mechanism empowers LSTMs to selectively 
preserve valuable information while discarding irrelevant details, guided by the weight values assigned during the 
training process. 
 
By leveraging this structure, LSTMs efficiently capture essential features from the input data and store them for long-
term use. The decision-making process for preserving or forgetting information is dynamic and adapts during training, 
enabling LSTMs to focus on the most relevant aspects of the input sequence. This ability to balance information retention 
and removal makes LSTMs highly effective in modelling complex temporal dependencies in sequential data. 
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An LSTM model typically comprises three primary gates: the forget gate, the input gate, and the output gate. The forget 
gate determines which information should be retained or discarded from the memory, the input gate regulates the 
degree to which new information is incorporated into the memory, and the output gate decides the extent to which the 
stored value in the memory contributes to the final output. 
 
(a) Forget Gate: The forget gate typically employs a sigmoid activation function to decide which information should be 
discarded from the LSTM memory. This decision is based on the current input (𝒙𝒙𝒕𝒕) and the previous hidden state (𝒉𝒉𝒕𝒕−𝟏𝟏). 
The gate's output, denoted as(𝒇𝒇𝒕𝒕), is a value ranging between 0 and 1. A value close to 0 signifies that the learned 
information should be entirely discarded, while a value close to 1 indicates that the information should be fully retained. 
This process ensures that the LSTM selectively forgets irrelevant information while retaining crucial data for future 
computations. The output of the forget gate is calculated as: 
 

𝒇𝒇𝒕𝒕 = 𝝈𝝈 (𝑾𝑾𝒇𝒇𝒇𝒇 [𝒉𝒉𝒕𝒕−𝟏𝟏],𝑾𝑾𝒇𝒇𝒇𝒇 [𝒙𝒙𝒕𝒕],𝒃𝒃𝒇𝒇                                         (1) 
 
In this above equation, the constant (𝒃𝒃𝒇𝒇) is known as bias value. 
 
(b) Input Gate: The input gate determines whether new information should be incorporated into the LSTM memory. It 
consists of two key layers: (1) a sigmoid layer and (2) a hyperbolic tangent (𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) layer. The sigmoid layer identifies 
which values need to be updated, effectively acting as a filter for incoming data. Meanwhile, the (𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) layer generates 
a vector of potential new candidate values to be added to the memory. Together, these layers decide the extent and 
nature of the information that enters the LSTM's memory. The outputs of these layers are calculated using the following 
equations: 
 
𝒊𝒊𝒕𝒕 =  𝝈𝝈 (𝑾𝑾𝒊𝒊𝒊𝒊 [𝒉𝒉𝒕𝒕−𝟏𝟏],𝑾𝑾𝒊𝒊𝒊𝒊 [𝒙𝒙𝒕𝒕],𝒃𝒃𝒊𝒊                                            (2) 

𝒄𝒄𝒕𝒕 = 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑾𝑾𝒄𝒄𝒄𝒄 [𝒉𝒉𝒕𝒕−𝟏𝟏],𝑾𝑾𝒄𝒄𝒄𝒄 [𝒙𝒙𝒕𝒕],𝒃𝒃𝒄𝒄                                       (3) 

The input gate determines whether a value requires updating (𝒊𝒊𝒕𝒕) and generates a vector of new candidate values (𝒄𝒄𝒕𝒕� ) to 
be added to the LSTM memory. This process integrates the outputs of the input gate and forget gate to update the LSTM 
memory effectively. Specifically, the forget gate first removes any irrelevant or out dated information by multiplying the 
old memory value (𝒄𝒄𝒕𝒕−𝟏𝟏) with its output. Subsequently, the input gate adds the new candidate value (𝒊𝒊𝒕𝒕 ∗  𝒄𝒄𝒕𝒕� ) to the 
updated memory. Together, these components ensure the LSTM memory retains relevant information while discarding 
unnecessary data. The mathematical representation of this update process is as follows: 
 
𝒄𝒄𝒕𝒕 =  𝒇𝒇𝒕𝒕 ∗  𝒄𝒄𝒕𝒕−𝟏𝟏 +  𝒊𝒊𝒕𝒕 ∗  𝒄𝒄𝒕𝒕�                                             (4) 
 
Here, (𝒇𝒇𝒕𝒕) represents the output of the forget gate, a value ranging between 0 and 1. A value of 0 signifies the complete 
elimination of the existing information, whereas a value of 1 indicates the full retention of that information. This 
mechanism allows the LSTM model to selectively discard or preserve specific data based on its relevance to the current 
task. 
 
(c) Output Gate: This gate determines which portion of the LSTM memory contributes to the final output. Initially, a 
sigmoid layer is employed to decide the significance of various memory components. Next, a non-linear 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 function is 
applied to scale the memory values within the range of −1 to 1. Finally, the scaled values are multiplied by the output 
from the sigmoid layer to refine the contribution. The resulting computation can be expressed mathematically using the 
following equations: 
 
     𝒐𝒐𝒕𝒕 =  𝝈𝝈 (𝑾𝑾𝒐𝒐𝒐𝒐 [𝒉𝒉𝒕𝒕−𝟏𝟏],𝑾𝑾𝒐𝒐𝒐𝒐 [𝒙𝒙𝒕𝒕],𝒃𝒃𝒐𝒐                                     (5) 

      𝒉𝒉𝒕𝒕 =  𝒐𝒐𝒕𝒕 ∗ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒄𝒄𝒕𝒕)                                              (6) 

In these equations (𝒐𝒐𝒕𝒕) will be the output value and (𝒉𝒉𝒕𝒕) will be the value between -1 to 1. 
 
(3.2) Bi-directional Long Short-Term Memory (LSTM) 
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Bidirectional LSTMs [21] build upon traditional LSTM models by incorporating two layers of LSTMs to process the input 
data. In the first pass, the input sequence is fed into a forward LSTM layer, which processes the data sequentially. 
Subsequently, in the second pass, the reversed version of the input sequence is provided to a backward LSTM layer. This 
dual-layer approach enhances the model's ability to capture long-term dependencies in both forward and backward 
directions. As a result, it significantly improves the model's predictive accuracy and overall performance [22]. 
 

4. DATA DESCRIPTION  
4.1 DATASETS USED AND THEIR SOURCES 
The dataset (Table 1) used for this research comprises historical stock price data for ten companies selected based on 
their highest weightage in the NIFTY 50 index as on December 31, 2023. These companies were chosen because they 
collectively represent a significant portion of the NIFTY 50 index, making them ideal candidates for analysing stock 
market behaviour and price predictability. 
 
The historical stock price data was collected from the official website of the National Stock Exchange of India (NSE). The 
data includes key variables such as Open, High, Low, Close, which are commonly used for financial analysis and 
modelling. 
 
This comprehensive and high-quality dataset serves as the foundation for various predictive modelling tasks, including 
the evaluation of deep learning algorithms for stock price predictability in the Indian market. 
The data spans a period from January 1, 2010, to December 31, 2023, (totalling to 14 years) covering around 3,471 
observations for each company.  
 
4.2 RAW DATA STATISTICS 
For a basic understanding of the true nature of the price behaviour of these companies, this section provides detailed 
description of all statistical measures, including mean, median, standard deviation, variance, skewness, and kurtosis, 
which have been calculated based on the raw dataset without any preprocessing. This approach ensures that the initial 
analysis reflects the natural state of stock price distributions. The summary statistics for the selected companies are 
presented in Table 1. 

Table 1:- Summary statistics of raw datasets for each company. 
Company Weightage 

(%) 
Count Mean Median Std_Dev variance skew kurt 

AXISBANK 12.5 3471 507.14 505.95 227.01 51534.63 0.36 -0.75 
BHARTIARTL 8.45 3471 422.62 341.47 181.49 32938.14 1.42 0.90 
HDFCBANK 7.65 3471 800.54 639.55 493.34 243380.16 0.35 -1.34 
ICICIBANK 6.3 3471 377.41 284.10 242.13 58626.14 1.23 0.21 
INFY 4.2 3471 724.20 536.73 450.11 202598.33 1.11 -0.17 
ITC 4.01 3471 230.26 225.19 79.18 6269.71 0.70 1.07 
LT 4 3471 1177.63 1052.90 542.31 294097.03 1.47 2.55 
RELIANCE 3.94 3471 989.46 491.48 733.15 537513.68 0.87 -0.83 
SBIN 2.88 3471 300.59 265.40 120.27 14464.48 1.24 0.51 
TCS 2.86 3471 1667.85 1254.15 1045.68 1093447.78 0.66 -0.88 
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4.3 STATISTICAL INSIGHTS: 
Mean & Median: The mean and median values suggest the central tendency of stock prices. Notably, TCS and LT have the 
highest average stock prices over the period, whereas ITC has the lowest. 
Standard Deviation & Variance: These metrics measure volatility. TCS exhibits the highest standard deviation (1045.68), 
indicating greater price fluctuations, while ITC shows the least volatility. 
Skewness & Kurtosis: Most stocks exhibit positive skewness, indicating a tendency for higher prices over time, except 
for AXISBANK, HDFCBANK, RELIANCE, and TCS, which have a slightly negative skew. The kurtosis values indicate that 
LT has the most extreme price variations, while HDFCBANK and RELIANCE show relatively stable distributions. 
 
4.4 FIGURES REPRESENTING THE TRUE BEHAVIOUR OF CLOSING PRICE SERIES FOR ALL THE 
COMPANIES 
To illustrate the movement of stock prices over time, we provide visual representations of closing price trends for each 
company. 

 
Fig 4.1 Closing Price trend for Axis Bank                        Fig 4.2 Closing Price trend for Bharti Airtel 

          

 
         

Fig 4.3 Closing Price trend for HDFC Bank                        Fig 4.4 Closing Price trend for ICICI Bank 
        

 
Fig 4.5 Closing Price trend for INFY                            Fig 4.6 Closing Price trend for ITC 
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Fig 4.7 Closing Price trend for LT                                Fig 4.8 Closing Price trend for Reliance 
 
 

 
Fig 4.9 Closing Price trend for SBIN                                        Fig 4.10 Closing Price trend for TCS 

 
5. RESEARCH METHODOLOGY, ALGORITHMS AND EVALUATION MATRICS 

5.1 DATA CLEANING, PREPROCESSING, AND SPLITTING 
The raw dataset undergoes multiple preprocessing steps to ensure consistency and suitability for deep learning models. 
These steps include data cleaning, transformation, and structured splitting for model training. We ensure that all 
numerical values in the Open, High, Low, and Close price columns are properly formatted. It removes any unwanted 
characters and converts values into floating-point format for computational efficiency. To standardize feature values and 
improve model performance, MinMaxScaler is applied. This scales the OHLC values within a [0,1] range, ensuring that all 
input values are on a comparable scale. A separate scaler is applied to the dependent variable (Close Price) to maintain 
transformation consistency. 
The dataset is divided into three subsets while maintaining chronological order: 
Training Set (80%) :- Used for model training. 
Validation Set (15%) :- Used for hyperparameter tuning and performance optimization. 
Testing Set (5%) :- Used for final evaluation. 
 
5.2 STACKED LSTM ALGORITHM 
The first model employed in this study is a Stacked Long Short-Term Memory (LSTM) network, designed to capture 
temporal dependencies within stock price movements. This model is built using a deep, multi-layered LSTM architecture, 
ensuring the extraction of both long-term and short-term patterns from historical stock price data. 
 
The model is structured with four sequential LSTM layers, each with a decreasing number of neurons: 128, 64, 32, and 
16, respectively. These layers progressively refine the learned representations of stock price movements. Each LSTM 
layer employs the ReLU activation function, which enhances the model's ability to learn complex relationships within 
the dataset. The model accepts input in the form of time-series sequences, where the number of timesteps represents 
the historical window of stock prices considered for forecasting, and features corresponds to the OHLC price 
components. The output target is reshaped to match the expected format for sequential learning. 
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To enhance training efficiency, the model is compiled using the Adam optimizer with a learning rate of 0.0001, balancing 
convergence speed with stability. The Mean Squared Error (MSE) is employed as the loss function to minimize prediction 
errors. Additionally, an Early Stopping mechanism is implemented to monitor validation loss, terminating training if no 
improvement is observed over three consecutive epochs, preventing overfitting. 
 
Once compiled, the model is trained for 100 epochs, leveraging historical price sequences to predict future stock prices. 
The architecture ensures that each layer captures essential temporal dependencies, progressively refining feature 
extraction across layers. Figure 5.1 represent the Stacked LSTM network used in the study. 
 

 
Figure 5.1 Stacked LSTM model                    Figure 5.2 Bidirectional LSTM model 

 
5.3 BIDIRECTIONAL LSTM MODEL FOR STOCK PRICE PREDICTION 
The second algorithm implemented in this study is a Bidirectional Long Short-Term Memory (BiLSTM) model, an 
advanced variation of LSTM networks designed to enhance sequential learning.  
 
This model follows a deep stacked BiLSTM architecture comprising four layers with progressively decreasing neurons: 
128, 64, 32, and 16, respectively. Each of these layers employs the ReLU activation function, improving non-linearity 
learning and helping the model capture intricate patterns in stock price variations. The Bidirectional wrapper ensures 
that each LSTM cell learns patterns from both past and future states, thus increasing the model's ability to generalize 
across different market conditions. 
 
The training dataset is structured as a time-series sequence, where timesteps represents the look-back period of stock 
prices considered for prediction, and features corresponds to the OHLC values used as input variables. The dataset 
undergoes necessary reshaping to match the input format required by BiLSTM layers, ensuring that the model effectively 
processes sequential data. 
 
To optimize learning, the model is compiled using the Adam optimizer with a learning rate of 0.0001. The Mean Squared 
Error (MSE) is used as the loss function to minimize prediction errors and improve accuracy. Additionally, Early Stopping 
is implemented to halt training if no improvement in validation loss is observed for three consecutive epochs, thus 
preventing overfitting. 
 
The model is trained over 100 epochs, leveraging an 80%-15%-5% split for training, validation, and testing, respectively. 
Figure 5.2 represent the Stacked LSTM network used in the study. 
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5.4 ASSESSMENT METRICS  
5.4.1 ROOT MEAN SQUARED ERROR 
Deep learning algorithms commonly report “loss” values, which represent a measure of how far off the model’s 
predictions are from the actual outcomes. In technical terms, loss acts as a penalty for inaccurate predictions. A loss value 
of zero indicates a flawless prediction by the model. Therefore, the primary objective during model training is to find an 
optimal set of weights and biases that reduce the loss as much as possible. 
 
Besides the loss metric, which is primarily used during the training of deep learning models, researchers frequently 
employ the Root Mean Square Error (RMSE) to evaluate the accuracy of the predictions. RMSE quantifies the 
discrepancies between the predicted values and the actual results. The mathematical formula for calculating RMSE is 
given as follows: 
 

 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =  �𝟏𝟏
𝑵𝑵

 ∑ (𝒚𝒚𝒊𝒊 −  𝒚𝒚𝒊𝒊� )𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏                                                 (7) 

In the equation, N represents the total number of data points, 𝒚𝒚𝒊𝒊 denotes the actual observed value, and 𝒚𝒚𝒊𝒊�  refers to the 
predicted value. A key advantage of utilizing RMSE is its ability to heavily penalize significant prediction errors. 
Moreover, RMSE results are expressed in the same units as the target variable, making interpretation straightforward. 
Additionally, the percentage reduction in RMSE was employed as an indicator to measure the level of improvement, 
which can be determined using the following formula: 
 
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 % =  𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗−𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗
 ∗ 𝟏𝟏𝟏𝟏𝟏𝟏                  (8) 

 
5.4.2 MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) 
MAPE is a widely used metric that quantifies the accuracy of a forecasting model by measuring the average percentage 
difference between predicted values and actual observations. The mathematical representation of MAPE is given as: 
 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 =  𝟏𝟏
𝑵𝑵

 ∑ �𝒚𝒚𝒊𝒊− 𝒚𝒚𝒊𝒊�
𝒚𝒚𝒊𝒊

�𝑵𝑵
𝒊𝒊=𝟏𝟏 ∗ 𝟏𝟏𝟏𝟏𝟏𝟏                                            (9) 

 
Where, N, 𝒚𝒚𝒊𝒊 and 𝒚𝒚𝒊𝒊�  denotes the same meaning as above. 
MAPE expresses errors as a percentage, making it an easily interpretable metric for evaluating model performance 
across different datasets. A lower MAPE indicates higher accuracy, whereas a higher value signifies greater deviations 
between predicted and actual values. 
 
5.4.3 COEFFICIENT OF DETERMINATION (𝑹𝑹𝟐𝟐) 
The R-squared (𝑹𝑹𝟐𝟐) metric evaluates the goodness of fit for a predictive model by assessing how well the independent 
variables explain the variance in the dependent variable. The mathematical formulation for R² is: 
  

           𝑹𝑹𝟐𝟐 = 𝟏𝟏 −  ∑ (𝒚𝒚𝒊𝒊− 𝒚𝒚𝒊𝒊� )𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏
∑ (𝒚𝒚𝒊𝒊− 𝒚𝒚�)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

                                               (10)                

 
Where, 𝒚𝒚� represent the mean of all actual observed values. 
The 𝑹𝑹𝟐𝟐 value ranges from 0 to 1, where a value closer to 1 indicates that the model explains a large portion of the variance 
in the dataset, whereas a value near 0 suggests that the model has poor explanatory power. 
 

6. RESULTS AND INTERPRETATION 
6.1 RESULTS BASED ON EVALUATION METRICS 
This section presents a comparative analysis of the Stacked LSTM and Bidirectional LSTM models based on the three 
evaluation metrics: Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R²). 
These metrics provide insight into the predictive accuracy and overall performance of each model across different 
companies. Table 6.1 Provide the detailed description of results achieved by both of the models. 
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6.1.1PERFORMANCE COMPARISON BASED ON RMSE 
RMSE measures the absolute error in predictions, with lower values indicating better performance. Across all companies, 
the Bidirectional LSTM consistently achieved lower RMSE values compared to the Stacked LSTM, suggesting that it 
produces more precise predictions. 
 
For instance, in the case of AXISBANK, the RMSE for the Bidirectional LSTM model is 16.01, which is lower than the 
Stacked LSTM's 19.73, indicating that the Bidirectional LSTM reduces error magnitude significantly. Similarly, for 
HDFCBANK, the RMSE for the Bidirectional model is 23.46, whereas the Stacked LSTM produces a higher value of 28.65. 
Across all companies, the Bidirectional LSTM demonstrates superior performance by achieving lower RMSE values, 
meaning it reduces larger discrepancies between actual and predicted stock prices. 
 
6.1.2 PERFORMANCE COMPARISON BASED ON MAPE 
MAPE quantifies the percentage error in predictions. A lower MAPE indicates higher forecasting accuracy. The 
Bidirectional LSTM consistently outperforms the Stacked LSTM by achieving lower MAPE values across all companies. 
 
For example, for BHARTIARTL, the Bidirectional LSTM yields a MAPE of 0.011, whereas the Stacked LSTM produces a 
higher 0.020, highlighting the significant accuracy improvement. The pattern is similar across all companies, with 
Bidirectional LSTM maintaining a lower error percentage. Notably, the largest disparity in MAPE is observed in SBIN, 
where the Bidirectional LSTM achieves 0.012 compared to Stacked LSTM's 0.025, indicating a more stable and reliable 
forecasting performance with the Bidirectional model. 
 
6.1.3 PERFORMANCE COMPARISON BASED ON R² SCORE 
The R² value measures how well the model explains the variance in stock prices, with values closer to 1.0 indicating 
better predictive performance. Across the dataset, Bidirectional LSTM consistently achieves higher R² values compared 
to Stacked LSTM, demonstrating that it captures more of the variability in stock prices. For example, LT shows the highest 
R² value of 0.99 under Bidirectional LSTM, compared to 0.89 for the Stacked LSTM, indicating an exceptionally well-fitted 
model. Similarly, BHARTIARTL exhibits an R² of 0.96 with Bidirectional LSTM, significantly outperforming the 0.89 of 
Stacked LSTM. The differences in R² values suggest that the Bidirectional LSTM model explains stock price variations 
more effectively than the Stacked LSTM. 
 
6.2 RESULTS AND DISCUSSION BASED ON LOSS METRICS 
This section presents a detailed comparison of the Stacked LSTM and Bidirectional LSTM models based on their training 
and validation loss metrics. The analysis considers the minimum and maximum loss values, standard deviation (SD), 
number of batches used in training, and validation loss metrics to assess model stability, convergence, and overall 
efficiency. Table 6.2 presents the results based on loss statistics achieved using Bidirectional Model and Table 6.3 
presents the results based on loss statistics of Stack LSTM model. 
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Table 6.1 Loss statistics under Bidirectional LSTM 

 
6.2.1. COMPARISON OF TRAINING LOSS (MIN, MAX, AND SD) 
The minimum training loss (Min) represents the lowest error achieved by the model, while the maximum training loss 
(Max) indicates the highest loss observed during training. Standard deviation (SD) measures the variability of loss, where 
lower SD values indicate a more stable training process. 
 
From the results, the Bidirectional LSTM model consistently achieved lower minimum training loss values compared to 
the Stacked LSTM model. For example, in HDFCBANK, the minimum training loss for the Bidirectional model is 0.0001, 
whereas the Stacked LSTM model records a slightly higher value of 0.00007. Similarly, for AXISBANK, the minimum loss 
for Bidirectional LSTM is 0.0003, while Stacked LSTM achieves a slightly lower 0.00027. However, across most 
companies, Bidirectional LSTM shows slightly more stability in achieving low training loss values. 
 
In terms of maximum training loss, the Stacked LSTM model records higher max loss values in most cases, suggesting 
larger fluctuations in training. For instance, in AXISBANK, the maximum loss in the Bidirectional model is 0.29, whereas 
in the Stacked LSTM model, it increases to 0.34. Similar trends are observed across companies such as LT (0.34 vs. 0.35) 
and ICICIBANK (0.21 vs. 0.26). 
 
The standard deviation (SD) of training loss is an essential factor that indicates the stability of the learning process. 
Lower SD values suggest smoother convergence. The results show that Bidirectional LSTM has lower SD in most cases, 
such as, AXISBANK (0.063 for BiLSTM vs. 0.08298 for Stacked LSTM) and INFY (0.046 for BiLSTM vs. 0.05132 for Stacked 
LSTM) These values indicate that Bidirectional LSTM demonstrates more stable training, with fewer fluctuations in loss 
values. 
 
6.2.2 TRAINING EFFICIENCY AND BATCH UTILIZATION 
The number of batches used in training reflects the level of optimization required for convergence. The Bidirectional 
LSTM generally requires a slightly higher number of batches than the Stacked LSTM, which suggests that it undergoes a 
more refined learning process. For example, HDFCBANK requires 23 batches in the Bidirectional model compared to 18 
in Stacked LSTM. AXISBANK requires 21 batches in BiLSTM, while Stacked LSTM converges in 16 batches. This indicates 
that Bidirectional LSTM undergoes slightly longer training but results in a more stable and optimized model. 
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Table 6.2 Loss statistics under Stacked LSTM 

 
6.2.3 COMPARISON OF VALIDATION LOSS (MIN, MAX, AND SD) 
Validation loss is crucial in assessing generalization ability, where lower values indicate better real-world performance. 
The Bidirectional LSTM model consistently achieves lower minimum validation loss values compared to the Stacked 
LSTM, indicating better generalization. For example, HDFCBANK (0.0055 for BiLSTM vs. 0.0069 for Stacked LSTM) and 
ICICIBANK (0.0038 for BiLSTM vs. 0.00542 for Stacked LSTM) 
 
The maximum validation loss is higher in Stacked LSTM across most companies, indicating greater instability during 
validation. AXISBANK shows a validation max of 0.09 in BiLSTM, whereas it rises to 0.19 in Stacked LSTM. INFY records 
0.23 in BiLSTM vs. 0.27 in Stacked LSTM. These results suggest that the Stacked LSTM model is prone to larger 
fluctuations in validation loss, which may indicate potential overfitting or instability in training. 
 
A lower validation SD suggests more stable performance across epochs. The Bidirectional LSTM model generally 
achieves lower SD values, indicating more consistent validation performance. Examples include, AXISBANK (0.0177 for 
BiLSTM vs. 0.04556 for Stacked LSTM) and INFY (0.0591 for BiLSTM vs. 0.06361 for Stacked LSTM) 
This suggests that Bidirectional LSTM maintains more uniform performance on unseen validation data, reducing 
overfitting tendencies. 
 
6.3 GRAPHICAL REPRESENTATION OF RESULTS 
To further illustrate the performance of both models, this section provides a pictorial representation of the actual and 
predicted closing prices as well as the training and validation loss trends for the top five companies: AXISBANK, 
BHARTIARTL, HDFCBANK, ICICIBANK, and INFY. These visualizations offer a clear understanding of how well each 
model captures stock price movements and how effectively they minimize prediction errors. 
Below given is the graphical representation of results under Bidirectional LSTM. 
 

 
 

Figure 6.3.1 Graphs of Comparison of prices and Loss statistics for AXISBANK 
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Figure 6.3.1 Graphs of Comparison of prices and Loss statistics for BHARTIARTL 

 
Figure 6.3.1 Graphs of Comparison of prices and Loss statistics for HDFCBANK 

 
Figure 6.3.1 Graphs of Comparison of prices and Loss statistics for ICICIBANK 

 
 

 
Figure 6.3.1 Graphs of Comparison of prices and Loss statistics for INFY 

 
7. CONCLUSION 

The present study aimed to develop and evaluate deep learning models for stock price prediction using historical OHLC 
(Open, High, Low, Close) data. Two advanced time-series forecasting models were implemented: Stacked Long Short-
Term Memory (LSTM) and Bidirectional LSTM (BiLSTM). The primary objective was to assess their predictive 
performance using three key evaluation metrics—Root Mean Squared Error (RMSE), Mean Absolute Percentage Error 
(MAPE), and R-squared (R²)—across multiple companies with significant weightage in the Nifty 50 Index. 
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The data preprocessing phase ensured the dataset was cleaned, normalized, and structured appropriately for deep 
learning models. Both models were trained and validated on historical stock price data spanning from January 1, 2010, 
to December 31, 2023, allowing for an extensive evaluation of market patterns and trends. 
 
The results consistently demonstrated the superiority of the Bidirectional LSTM model over the Stacked LSTM across all 
performance metrics. The BiLSTM model achieved lower RMSE values, indicating better predictive accuracy with fewer 
discrepancies between actual and predicted stock prices. Additionally, MAPE values were significantly lower for BiLSTM, 
confirming its ability to make precise predictions with minimal percentage error. The higher R² values further validated 
that BiLSTM explained stock price movements more effectively than the Stacked LSTM. 
 
A detailed loss metrics analysis revealed that BiLSTM exhibited lower validation loss, smoother convergence, and greater 
training stability compared to Stacked LSTM. The lower standard deviation in loss values highlighted the greater 
robustness of BiLSTM in learning complex stock price trends, thereby reducing the risks of overfitting and instability 
during training. Furthermore, visual comparisons of actual and predicted closing prices provided strong empirical 
evidence supporting the effectiveness of BiLSTM in closely following real stock price movements. 
 
Overall, this study concludes that Bidirectional LSTM is a more efficient and reliable model for stock price prediction, 
offering enhanced predictive accuracy and better generalization capabilities. The ability of BiLSTM to capture both past 
and future dependencies in time-series data gives it a distinct advantage over standard LSTM architectures. These 
findings suggest that deep learning models, particularly BiLSTM, can play a vital role in financial forecasting, assisting 
investors and analysts in making informed decisions based on historical market trends. 
 
FUTURE SCOPE 
Although the Bidirectional LSTM model has proven effective, there is potential for further improvement. Future research 
could explore hybrid deep learning models, such as combining LSTMs with Convolutional Neural Networks (CNNs) for 
enhanced feature extraction. Additionally, incorporating external macroeconomic indicators and sentiment analysis 
from financial news or social media could further refine stock price predictions. Expanding the study to include multiple 
stock market indices across different economic regions would also provide deeper insights into the robustness of these 
models in varying market conditions. 
 
In conclusion, this research reaffirms the growing importance of deep learning in financial forecasting, demonstrating 
that advanced neural network architectures like BiLSTM can significantly improve stock market predictions, making 
them valuable tools for traders, analysts, and researchers in the domain of quantitative finance. 
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	1. INTRODUCTION
	Prediction of time series data (e.g. stock prices/trend) is of utmost importance, yet it remains a complex and intricate task. The accuracy and effectiveness of various available forecasting models severely depend on the nature of dataset and its unde...
	Linear regression for creating the model and moving averages for predicting future values have been the common criteria used by tradition approaches to time series forecasting. One of the most widely used methods in this category is the Auto-Regressiv...
	 The inherent limitations of the traditional time series forecasting models as suggested by various studies [6] can be listed as below:-
	In recent years, machine learning and deep learning have emerged as powerful tools for addressing the limitations of traditional forecasting techniques. Unlike model-driven approaches, these methods rely on data-driven processes to extract patterns an...
	RNNs come in several variations, primarily distinguished by their ability to retain information from previous inputs. Standard RNNs, often referred to as "vanilla RNNs," struggle to remember past data, as they operate using feedforward mechanisms. Thi...
	The another variant of LSTM models is known as Bidirectional LSTMs (BiLSTMs) which extends the concept of feedback-based mechanism by processing data in two directions—first from left to right and then from right to left. Moreover, as there could be u...
	Various Researches [1] have consistently shown that deep learning models, particularly LSTM networks, outperform traditional ARIMA-based approaches, especially for long-term forecasting tasks. While LSTM has demonstrated superior performance, some imp...
	1. Can the predictive accuracy be further enhanced by incorporating further tuning of hyper-parameters?
	2. Could there be suggested improved variants of LSTM model for prediction of time series data with particular reference to stock prices data?
	3. Does the BiLSTMs, with their additional training capabilities, outperform standard unidirectional LSTMs?
	This exploration opens up possibilities for refining LSTM-based models and leveraging their capabilities to address the complexities of time series forecasting with greater precision.
	For exploring whether further tuning of hyper-parameters and incorporation of additional layers of training into the architecture of an LSTM improves its prediction, this paper explores the performance of Bidirectional LSTM (BiLSTM) and LSTM.
	In particular, we are interested in addressing the following research questions:
	1. Does the prediction accuracy improve when stock price data is analyzed in both directions (i.e., historical-to-current and current-to-historical) using LSTM and BiLSTM models?
	2. How do LSTM and BiLSTM architectures differ in processing and interpreting stock price data for forecasting purposes?
	3. Which architecture (LSTM or BiLSTM) achieves stability faster while predicting stock prices for companies listed on the National Stock Exchange of India?
	To address these research questions, this study conducts a series of experiments using stock price data from 10 companies listed on the National Stock Exchange of India. The key contributions of this paper to the literature are as follows:
	1. Examine whether incorporating additional layers of training enhances the predictive accuracy of financial time series data, specifically stock price movements.
	2. Provide a comparative performance analysis of uni-directional LSTM and its extension, BiLSTM, in forecasting stock prices.
	3. Conduct a behavioural study of the learning processes in LSTM and BiLSTM architectures, focusing on their training mechanisms and data handling strategies. The findings reveal that BiLSTM models utilize a distinct training strategy, characterized b...
	The organization of this paper is as follows: Section (2) provides an overview of relevant literature. Section (3) outlines the foundational concepts and mathematical formulations necessary for the study. The details on dataset used for the study, the...
	2. RELATED WORKS
	Time series forecasting traditional models specifically relied on Autoregressive Integrated Moving Average (ARIMA) and its extensions, such as Seasonal ARIMA (SARIMA) and ARIMA with Explanatory Variables (ARIMAX), Box and Jenkins [2]. Some authors Kha...
	In recent years, machine learning techniques have emerged in various forms to tackle financial forecasting challenges, including efforts to predict stock prices, stock market directions and sudden market crashes etc., such as the 2007-08 financial cri...
	For example, linear classifiers like logistic regression have been successfully applied to forecast the Indian stock market, Dutta et al. [15] and the S&P 500 index, Chen [16]. Prior to the rise of neural networks, more advanced methods like large-mar...
	Another widely used machine learning method, random forests, has been applied to stock market prediction problems. For instance, in Lauretto et al. [19], researchers analyzed the BM&F/BOVESPA stock market using various technical indicators such as sim...
	Krauss et al. [7] applied various forecasting models, including deep learning, gradient-boosted trees, and random forests, to the S&P 500 index. They highlighted the challenges associated with training neural networks and other deep learning algorithm...
	Studies such as Kim and Moon [10] and Cui et al. [11] have examined the relative performance of LSTM and its bidirectional variant, BiLSTM. Kim and Moon observed that BiLSTM outperformed standard unidirectional LSTM models when applied to multivariate...
	Studies such as Namini et al. [1] and N. Tavakoli [12] have been conducted where ARIMA and LSTM models were compared for their effectiveness in predicting financial and economic time series data.
	Based on the researches like Pang et al. [13] and scheduler [14] bidirectional training has shown substantial benefits in traditional prediction tasks, such as software vulnerability forecasting as shown in studies, its advantages in financial and eco...
	3. FOUNDATIONAL CONCEPTS AND MATHEMATICAL FORMULATIONS
	3.1 LONG SHORT-TERM MEMORY (LSTM)
	Long Short-Term Memory (LSTM) models were introduced as an advanced variation of RNNs specifically designed to overcome this challenge of “Vanishing Gradient Problem” effectively. LSTM models enhance the memory capability of RNNs, allowing them to ret...
	The memory component in LSTMs is referred to as a "gated cell," which derives its name from the mechanism that controls the flow of information. These gates determine whether information should be retained or discarded based on specific criteria, ensu...
	By leveraging this structure, LSTMs efficiently capture essential features from the input data and store them for long-term use. The decision-making process for preserving or forgetting information is dynamic and adapts during training, enabling LSTMs...
	An LSTM model typically comprises three primary gates: the forget gate, the input gate, and the output gate. The forget gate determines which information should be retained or discarded from the memory, the input gate regulates the degree to which new...
	(a) Forget Gate: The forget gate typically employs a sigmoid activation function to decide which information should be discarded from the LSTM memory. This decision is based on the current input (,𝒙-𝒕.) and the previous hidden state (,𝒉-𝒕−𝟏.). Th...
	,𝒇-𝒕. = 𝝈 (,𝑾-𝒇𝒉. ,,𝒉-𝒕−𝟏.., ,𝑾-𝒇𝒙. ,,𝒙-𝒕.., ,𝒃-𝒇.                                         (1)
	In this above equation, the constant (,𝒃-𝒇.) is known as bias value.
	(b) Input Gate: The input gate determines whether new information should be incorporated into the LSTM memory. It consists of two key layers: (1) a sigmoid layer and (2) a hyperbolic tangent (𝒕𝒂𝒏𝒉) layer. The sigmoid layer identifies which values ...
	,𝒊-𝒕.= 𝝈 (,𝑾-𝒊𝒉. ,,𝒉-𝒕−𝟏.., ,𝑾-𝒊𝒙. ,,𝒙-𝒕.., ,𝒃-𝒊.                                            (2)
	,𝒄-𝒕.=𝒕𝒂𝒏𝒉(,𝑾-𝒄𝒉. ,,𝒉-𝒕−𝟏.., ,𝑾-𝒄𝒙. ,,𝒙-𝒕.., ,𝒃-𝒄.                                       (3)
	The input gate determines whether a value requires updating (,𝒊-𝒕.) and generates a vector of new candidate values (,,𝒄-𝒕..) to be added to the LSTM memory. This process integrates the outputs of the input gate and forget gate to update the LSTM m...
	,𝒄-𝒕.= ,𝒇-𝒕.∗ ,𝒄-𝒕−𝟏.+ ,𝒊-𝒕.∗ ,,𝒄-𝒕..                                            (4)
	Here, (,𝒇-𝒕.) represents the output of the forget gate, a value ranging between 0 and 1. A value of 0 signifies the complete elimination of the existing information, whereas a value of 1 indicates the full retention of that information. This mechani...
	(c) Output Gate: This gate determines which portion of the LSTM memory contributes to the final output. Initially, a sigmoid layer is employed to decide the significance of various memory components. Next, a non-linear 𝒕𝒂𝒏𝒉 function is applied to ...
	,𝒐-𝒕.= 𝝈 (,𝑾-𝒐𝒉. ,,𝒉-𝒕−𝟏.., ,𝑾-𝒐𝒙. ,,𝒙-𝒕.., ,𝒃-𝒐.                                     (5)
	,𝒉-𝒕.= ,𝒐-𝒕.∗𝒕𝒂𝒏𝒉(,𝒄-𝒕.)                                              (6)
	In these equations (,𝒐-𝒕.) will be the output value and (,𝒉-𝒕.) will be the value between -1 to 1.
	(3.2) Bi-directional Long Short-Term Memory (LSTM)
	Bidirectional LSTMs [21] build upon traditional LSTM models by incorporating two layers of LSTMs to process the input data. In the first pass, the input sequence is fed into a forward LSTM layer, which processes the data sequentially. Subsequently, in...
	4. DATA DESCRIPTION
	4.1 DATASETS USED AND THEIR SOURCES
	The dataset (Table 1) used for this research comprises historical stock price data for ten companies selected based on their highest weightage in the NIFTY 50 index as on December 31, 2023. These companies were chosen because they collectively represe...
	The historical stock price data was collected from the official website of the National Stock Exchange of India (NSE). The data includes key variables such as Open, High, Low, Close, which are commonly used for financial analysis and modelling.
	This comprehensive and high-quality dataset serves as the foundation for various predictive modelling tasks, including the evaluation of deep learning algorithms for stock price predictability in the Indian market.
	The data spans a period from January 1, 2010, to December 31, 2023, (totalling to 14 years) covering around 3,471 observations for each company.
	4.2 RAW DATA STATISTICS
	For a basic understanding of the true nature of the price behaviour of these companies, this section provides detailed description of all statistical measures, including mean, median, standard deviation, variance, skewness, and kurtosis, which have be...
	Table 1:- Summary statistics of raw datasets for each company.
	4.3 STATISTICAL INSIGHTS:
	Mean & Median: The mean and median values suggest the central tendency of stock prices. Notably, TCS and LT have the highest average stock prices over the period, whereas ITC has the lowest.
	Standard Deviation & Variance: These metrics measure volatility. TCS exhibits the highest standard deviation (1045.68), indicating greater price fluctuations, while ITC shows the least volatility.
	Skewness & Kurtosis: Most stocks exhibit positive skewness, indicating a tendency for higher prices over time, except for AXISBANK, HDFCBANK, RELIANCE, and TCS, which have a slightly negative skew. The kurtosis values indicate that LT has the most ext...
	4.4 FIGURES REPRESENTING THE TRUE BEHAVIOUR OF CLOSING PRICE SERIES FOR ALL THE COMPANIES
	To illustrate the movement of stock prices over time, we provide visual representations of closing price trends for each company.
	Fig 4.1 Closing Price trend for Axis Bank                        Fig 4.2 Closing Price trend for Bharti Airtel
	Fig 4.3 Closing Price trend for HDFC Bank                        Fig 4.4 Closing Price trend for ICICI Bank
	Fig 4.5 Closing Price trend for INFY                            Fig 4.6 Closing Price trend for ITC
	Fig 4.7 Closing Price trend for LT                                Fig 4.8 Closing Price trend for Reliance
	Fig 4.9 Closing Price trend for SBIN                                        Fig 4.10 Closing Price trend for TCS
	5. RESEARCH METHODOLOGY, ALGORITHMS AND EVALUATION MATRICS
	5.1 DATA CLEANING, PREPROCESSING, AND SPLITTING
	The raw dataset undergoes multiple preprocessing steps to ensure consistency and suitability for deep learning models. These steps include data cleaning, transformation, and structured splitting for model training. We ensure that all numerical values ...
	The dataset is divided into three subsets while maintaining chronological order:
	Training Set (80%) :- Used for model training.
	Validation Set (15%) :- Used for hyperparameter tuning and performance optimization.
	Testing Set (5%) :- Used for final evaluation.
	5.2 STACKED LSTM ALGORITHM
	The first model employed in this study is a Stacked Long Short-Term Memory (LSTM) network, designed to capture temporal dependencies within stock price movements. This model is built using a deep, multi-layered LSTM architecture, ensuring the extracti...
	The model is structured with four sequential LSTM layers, each with a decreasing number of neurons: 128, 64, 32, and 16, respectively. These layers progressively refine the learned representations of stock price movements. Each LSTM layer employs the ...
	To enhance training efficiency, the model is compiled using the Adam optimizer with a learning rate of 0.0001, balancing convergence speed with stability. The Mean Squared Error (MSE) is employed as the loss function to minimize prediction errors. Add...
	Once compiled, the model is trained for 100 epochs, leveraging historical price sequences to predict future stock prices. The architecture ensures that each layer captures essential temporal dependencies, progressively refining feature extraction acro...
	Figure 5.1 Stacked LSTM model                    Figure 5.2 Bidirectional LSTM model
	5.3 BIDIRECTIONAL LSTM MODEL FOR STOCK PRICE PREDICTION
	The second algorithm implemented in this study is a Bidirectional Long Short-Term Memory (BiLSTM) model, an advanced variation of LSTM networks designed to enhance sequential learning.
	This model follows a deep stacked BiLSTM architecture comprising four layers with progressively decreasing neurons: 128, 64, 32, and 16, respectively. Each of these layers employs the ReLU activation function, improving non-linearity learning and help...
	The training dataset is structured as a time-series sequence, where timesteps represents the look-back period of stock prices considered for prediction, and features corresponds to the OHLC values used as input variables. The dataset undergoes necessa...
	To optimize learning, the model is compiled using the Adam optimizer with a learning rate of 0.0001. The Mean Squared Error (MSE) is used as the loss function to minimize prediction errors and improve accuracy. Additionally, Early Stopping is implemen...
	The model is trained over 100 epochs, leveraging an 80%-15%-5% split for training, validation, and testing, respectively. Figure 5.2 represent the Stacked LSTM network used in the study.
	5.4 ASSESSMENT METRICS
	5.4.1 ROOT MEAN SQUARED ERROR
	Deep learning algorithms commonly report “loss” values, which represent a measure of how far off the model’s predictions are from the actual outcomes. In technical terms, loss acts as a penalty for inaccurate predictions. A loss value of zero indicate...
	Besides the loss metric, which is primarily used during the training of deep learning models, researchers frequently employ the Root Mean Square Error (RMSE) to evaluate the accuracy of the predictions. RMSE quantifies the discrepancies between the pr...
	𝑹𝑴𝑺𝑬= ,,𝟏-𝑵. ,𝒊=𝟏-𝑵-,(,𝒚-𝒊.− ,,𝒚-𝒊..)-𝟐...                                                (7)
	In the equation, N represents the total number of data points, ,𝒚-𝒊. denotes the actual observed value, and ,,𝒚-𝒊.. refers to the predicted value. A key advantage of utilizing RMSE is its ability to heavily penalize significant prediction errors. ...
	𝑪𝒉𝒂𝒏𝒈𝒆𝒔 %= ,𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒗𝒂𝒍𝒖𝒆−𝑨𝒄𝒕𝒖𝒂𝒍 𝒗𝒂𝒍𝒖𝒆-𝑨𝒄𝒕𝒖𝒂𝒍 𝒗𝒂𝒍𝒖𝒆. ∗𝟏𝟎𝟎                  (8)
	5.4.2 MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)
	MAPE is a widely used metric that quantifies the accuracy of a forecasting model by measuring the average percentage difference between predicted values and actual observations. The mathematical representation of MAPE is given as:
	𝑴𝑨𝑷𝑬= ,𝟏-𝑵. ,𝒊=𝟏-𝑵-,,,𝒚-𝒊.− ,,𝒚-𝒊..-,𝒚-𝒊....∗𝟏𝟎𝟎                                            (9)
	Where, N, ,𝒚-𝒊. and ,,𝒚-𝒊.. denotes the same meaning as above.
	MAPE expresses errors as a percentage, making it an easily interpretable metric for evaluating model performance across different datasets. A lower MAPE indicates higher accuracy, whereas a higher value signifies greater deviations between predicted a...
	5.4.3 COEFFICIENT OF DETERMINATION (,𝑹-𝟐.)
	The R-squared (,𝑹-𝟐.) metric evaluates the goodness of fit for a predictive model by assessing how well the independent variables explain the variance in the dependent variable. The mathematical formulation for R² is:
	,𝑹-𝟐.=𝟏− ,,𝒊=𝟏-𝑵-,(,𝒚-𝒊.− ,,𝒚-𝒊..)-𝟐..-,𝒊=𝟏-𝑵-,(,𝒚-𝒊.− ,𝒚.)-𝟐...                                               (10)
	Where, ,𝒚. represent the mean of all actual observed values.
	The ,𝑹-𝟐. value ranges from 0 to 1, where a value closer to 1 indicates that the model explains a large portion of the variance in the dataset, whereas a value near 0 suggests that the model has poor explanatory power.
	6. RESULTS AND INTERPRETATION
	6.1 RESULTS BASED ON EVALUATION METRICS
	This section presents a comparative analysis of the Stacked LSTM and Bidirectional LSTM models based on the three evaluation metrics: Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R²). These metrics provide insi...
	6.1.1PERFORMANCE COMPARISON BASED ON RMSE
	RMSE measures the absolute error in predictions, with lower values indicating better performance. Across all companies, the Bidirectional LSTM consistently achieved lower RMSE values compared to the Stacked LSTM, suggesting that it produces more preci...
	For instance, in the case of AXISBANK, the RMSE for the Bidirectional LSTM model is 16.01, which is lower than the Stacked LSTM's 19.73, indicating that the Bidirectional LSTM reduces error magnitude significantly. Similarly, for HDFCBANK, the RMSE fo...
	6.1.2 PERFORMANCE COMPARISON BASED ON MAPE
	MAPE quantifies the percentage error in predictions. A lower MAPE indicates higher forecasting accuracy. The Bidirectional LSTM consistently outperforms the Stacked LSTM by achieving lower MAPE values across all companies.
	For example, for BHARTIARTL, the Bidirectional LSTM yields a MAPE of 0.011, whereas the Stacked LSTM produces a higher 0.020, highlighting the significant accuracy improvement. The pattern is similar across all companies, with Bidirectional LSTM maint...
	6.1.3 PERFORMANCE COMPARISON BASED ON R² SCORE
	The R² value measures how well the model explains the variance in stock prices, with values closer to 1.0 indicating better predictive performance. Across the dataset, Bidirectional LSTM consistently achieves higher R² values compared to Stacked LSTM,...
	6.2 RESULTS AND DISCUSSION BASED ON LOSS METRICS
	This section presents a detailed comparison of the Stacked LSTM and Bidirectional LSTM models based on their training and validation loss metrics. The analysis considers the minimum and maximum loss values, standard deviation (SD), number of batches u...
	Table 6.1 Loss statistics under Bidirectional LSTM
	6.2.1. COMPARISON OF TRAINING LOSS (MIN, MAX, AND SD)
	The minimum training loss (Min) represents the lowest error achieved by the model, while the maximum training loss (Max) indicates the highest loss observed during training. Standard deviation (SD) measures the variability of loss, where lower SD valu...
	From the results, the Bidirectional LSTM model consistently achieved lower minimum training loss values compared to the Stacked LSTM model. For example, in HDFCBANK, the minimum training loss for the Bidirectional model is 0.0001, whereas the Stacked ...
	In terms of maximum training loss, the Stacked LSTM model records higher max loss values in most cases, suggesting larger fluctuations in training. For instance, in AXISBANK, the maximum loss in the Bidirectional model is 0.29, whereas in the Stacked ...
	The standard deviation (SD) of training loss is an essential factor that indicates the stability of the learning process. Lower SD values suggest smoother convergence. The results show that Bidirectional LSTM has lower SD in most cases, such as, AXISB...
	6.2.2 TRAINING EFFICIENCY AND BATCH UTILIZATION
	The number of batches used in training reflects the level of optimization required for convergence. The Bidirectional LSTM generally requires a slightly higher number of batches than the Stacked LSTM, which suggests that it undergoes a more refined le...
	Table 6.2 Loss statistics under Stacked LSTM
	6.2.3 COMPARISON OF VALIDATION LOSS (MIN, MAX, AND SD)
	Validation loss is crucial in assessing generalization ability, where lower values indicate better real-world performance. The Bidirectional LSTM model consistently achieves lower minimum validation loss values compared to the Stacked LSTM, indicating...
	The maximum validation loss is higher in Stacked LSTM across most companies, indicating greater instability during validation. AXISBANK shows a validation max of 0.09 in BiLSTM, whereas it rises to 0.19 in Stacked LSTM. INFY records 0.23 in BiLSTM vs....
	A lower validation SD suggests more stable performance across epochs. The Bidirectional LSTM model generally achieves lower SD values, indicating more consistent validation performance. Examples include, AXISBANK (0.0177 for BiLSTM vs. 0.04556 for Sta...
	This suggests that Bidirectional LSTM maintains more uniform performance on unseen validation data, reducing overfitting tendencies.
	6.3 GRAPHICAL REPRESENTATION OF RESULTS
	To further illustrate the performance of both models, this section provides a pictorial representation of the actual and predicted closing prices as well as the training and validation loss trends for the top five companies: AXISBANK, BHARTIARTL, HDFC...
	Below given is the graphical representation of results under Bidirectional LSTM.
	Figure 6.3.1 Graphs of Comparison of prices and Loss statistics for AXISBANK
	Figure 6.3.1 Graphs of Comparison of prices and Loss statistics for BHARTIARTL
	Figure 6.3.1 Graphs of Comparison of prices and Loss statistics for HDFCBANK
	Figure 6.3.1 Graphs of Comparison of prices and Loss statistics for ICICIBANK
	Figure 6.3.1 Graphs of Comparison of prices and Loss statistics for INFY
	7. CONCLUSION
	The present study aimed to develop and evaluate deep learning models for stock price prediction using historical OHLC (Open, High, Low, Close) data. Two advanced time-series forecasting models were implemented: Stacked Long Short-Term Memory (LSTM) an...
	The data preprocessing phase ensured the dataset was cleaned, normalized, and structured appropriately for deep learning models. Both models were trained and validated on historical stock price data spanning from January 1, 2010, to December 31, 2023,...
	The results consistently demonstrated the superiority of the Bidirectional LSTM model over the Stacked LSTM across all performance metrics. The BiLSTM model achieved lower RMSE values, indicating better predictive accuracy with fewer discrepancies bet...
	A detailed loss metrics analysis revealed that BiLSTM exhibited lower validation loss, smoother convergence, and greater training stability compared to Stacked LSTM. The lower standard deviation in loss values highlighted the greater robustness of BiL...
	Overall, this study concludes that Bidirectional LSTM is a more efficient and reliable model for stock price prediction, offering enhanced predictive accuracy and better generalization capabilities. The ability of BiLSTM to capture both past and futur...
	FUTURE SCOPE
	Although the Bidirectional LSTM model has proven effective, there is potential for further improvement. Future research could explore hybrid deep learning models, such as combining LSTMs with Convolutional Neural Networks (CNNs) for enhanced feature e...
	In conclusion, this research reaffirms the growing importance of deep learning in financial forecasting, demonstrating that advanced neural network architectures like BiLSTM can significantly improve stock market predictions, making them valuable tool...
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