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ABSTRACT 

A The natural convection heat transfer of liquid metals in a confined enclosure is 
considered an important problem to passive cooling system. Natural convection in an 
enclose field with fluid-saturated porous medium. 
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1. INTRODUCTION 
Micropolar fluids have been shown to accurately simulate the flow characteristics of poly- meric additives, 
geomorphological sediments, colloidal suspensions, hematological suspensions, liquid crystals, lubricants, etc. The main 
advantage of using a micropolar fluid model compared to other non-Newtonian fluids is that it takes care of the rotation 
of fluid par- ticles by means of an independent kinematic vector called the microrotation vector. The mathematical theory 
of equations of micropolar fluids and applications of these fluids in the theory of lubrication and porous media is 
presented by Lukaszewicz 
The heat and mass transfer in micropolar fluids is also important in the context of chemical engineering, aerospace 
engineering, and also industrial manufacturing processes. The problem of free convection heat and mass transfer in the 
boundary layer flow along a vertical surface submerged in a micropolar fluid has been studied by a number of 
investigators. The boundary layer flow of a micropolar fluid over a semi-infinite plate . 
The aim of the present paper is to study the free convection heat and mass transfer along a vertical plate with uniform 
wall temperature and concentration embedded in a stable, micropolar fluid with thermal and mass stratification. 
Fluids with additive/suspension are considered non-Newtonian, which can be fully described by the theory of 
micropolar fluids first developed by Eringen [1]. Chamkha et al. [2] was the first to study the fully developed free 
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convection of a micropolar fluid in a vertical channel. This study was further extended by Cheng [3] to include mass 
transfer, Natural convection in an enclose field with fluid-saturated porous medium. The purpose of this article is to 
extend the work of Cheng [3] by taking the vertical channel. The solution of the boundary value problem will be obtained 
by using exact method. In this work we aim to study the fully developed heat and mass transfer by natural convection of 
as micropolar fluid inside a plane vertical channel for asymmetric wall temperature in presence of heat source. The 
closed form exact solutions are derived and the effect of the vortex viscosity parameter on the flow, heat transfer and 
mass transfer characteristics such as the velocity, microrotaion, volume, flow rates ,total heat rate added to the fluid and 
the total species rate added to the fluid are examined. 
 

2. PROBLEM FORMULATION AND MATHEMATICAL SOLUTION  
Let us consider the laminar flow of viscous incompressible  fluid past a flat and impressible elastic sheet. By applying 
two equal and opposite forces along thex-axis the sheet is stretched with a speed ( )wu x  proportional to the distance 
from the origin x=0. The resulting motion of the otherwise quiescent fluid is caused  by the moving sheet, and the flow is 
governed by the constant property Navier-stokes equations for steady two-dimensional flow. The viscous fluid is only 
partially adhering to the stretching sheet, and the fluid motion is thus subjected to the slip-flow condition  and the 
condition far away from the stretching sheet which are expressed as  

( ) ( ), w
uu x y u x L
y
∂

− =
∂

   at  y = 0 and v=-v0 ,   and 0u →  as  y →∞       (.1) 

 
 

 
 

Fig.1.  Schematic diagram of stretching sheet. 
 
It is noteworthy that in the present problem the fluid is dragged by the moving sheet. The Navier Stokes equations of 
motion for steady viscous incompressible fluid are given by  

 0,u u
x y
∂ ∂

+ =
∂ ∂

                  (.2) 
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Where υ is the kinematic viscosity, ρ  is the density, p is the fluid pressure. 

Let ( ) ( )
1 1
2 2

, ,c cu cxf v f yµ ρη η η
ρ µ

   ′= = − =   
   
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1 g( )
2wp p cµ η= −                                                                      (5) 

 
Introducing similarity transformation (.5) equations (.1), (2), ( .3) & (.4) takes  the form, 
  

( )2 ,f ff f′ ′′ ′′′− =          (6) 

( )
( ) ( )
( )

0 ,

0 1 0 ,

0 0,

f s

f f

g

γ

=

′ ′′= +

=

                                                                        (7)                                                                                             

 
and   0f as η′→ →∞                                                              (.8)                                                                                   
 
Here prime denotes differentiation with respect to η .  
Assuming, 
  ( ) 2 22 2 ,g f fη β′= + −                                                             (9) 
The shear stress coefficient is given by 

 
( )

1
2

1/ 0
2

2

2 0
2 Re

Re
2

y

f x
w

x

du
fdyc

pu

µ
β

= −′′
= = = −       (10) 

Where the local Reynolds number is defined as Rex w
xU
v

=  .The velocity component v does not contribute to shear 

stress at the sheet as that using the boundary layer assumption. 
 

3. HEAT TRANSFER ANALYSIS 
The governing boundary layer heat transport equation for the two-dimensional flow problem  under consideration  is 
given by  

 
2 2

2 2
p

T T k T Tu v
x y C x yρ

 ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ 

          (11) 

 Where ρ  is the density, Cp  is the specific heat  at constant pressure. 
 
The solution of equation (11) is obtained using two different types of heating processes namely,  
(i) Constant surface Temperature (CST)  
(ii) Prescribed surface Temperature (PST)  conditions as described below. 
 
Constant Surface Temperature (CST) 
The boundary conditions in case of CST is given by  

 
0wT T at y

T T as y∞

= =
→ →∞

           (12) 

Where wT  is the temperature of the sheet and T∞  is the temperature of the fluid far away from the sheet.  

 Defining the non-dimensional temperature ( )θ η  as  

 ( ) ,
w

T T
T T

θ η ∞

∞

−
=

−
           (13) 
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Where ( ) ( )w wT T T T and T Tθ η∞ ∞ ∞− = − −  is a constant  
Using equation (13),  equation (4.3.1) can be  written in the form  
 ( ) ( ) ( ) 0Prfθ η η θ η′′ ′+ =           (14) 

Where  
CpPr
k

µ
=  is the Prandtl number, consequently the boundary conditions (4.3.1.1) take the form   

 
( )
( )

1 0

0

at

as

θ η η

θ η η

= =

→ →∞
          (15) 

Introducing the new independent variable  
 Pr e βηξ −= −             (16) 
Substituting in (4.3.1.3) we obtain  

 ( )
2

2 1 Pr 0d d
d d
θ θξ ξ
ξ ξ

+ − − =           (17) 

The corresponding boundary conditions are  

 
( )
( )

1 Pr

0 0

at

as

θ ξ ξ

θ ξ ξ

= = −

→ →
          (18) 

 
  
The heat transfer rate, characterized by the Nusselt number, at the sheet is given by  

 
( ) ( ) ( )

1
12 2
20 Re 0x

w

Tk
cxyNu x

k T T v
θ θ

∞

∂
 ∂ ′ ′= = − = −  

       (19) 
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Pr 10 Pr
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M

M

β
θ β

−
+ −

+′ = −
− + −

        (20) 

 
4. RESULTS AND DISCUSSION  

An analysis has been carried out, to study the  behaviour of a viscous incompressible fluid taking into consideration of 
partial slip condition. Analytical solution is obtained for the flow and Heat  transfer  in the present investigation. 
Analytical solution for the heat  transport equations are sought in terms of hypergeomeric Kummer’s functions. The 
effect of  governing parameters like, slip parameterγ , suction parameter 0v− , Prandtl number Pr, are shown graphically 
from fig.2 to fig6. Before discussing the results of the present investigation we mention the following: 
 
Far away from the stretching surface the velocity u parallel to the sheet decays and eventually goes to zero. The velocity 
component v  perpendicular to the sheet, on the other hand, tends to constant negative values. Since f approaches β  
sufficiently far off the sheet.  
 
Closed form  analytical solutions like are generally rare in fluid mechanics. Even though a solution exist for a given case 
subjected to the conventional no slip boundary condition, generalization of that case to account for partial slip normally 
prohibits the existence of an analytical solution. Equations (9) & (.10) is an exact solution of the Navier-stokes equation 
and is formally valid for any Reynolds number.  
 
Fig (2) represents the effect of suction parameter on flow velocity ( )f η′  and it is noticed that as suction parameter s 

increases velocity profile ( )f η′  decreases. 
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Fig.(3) represents the effect of slip parameter γ on flow velocity ( )f η′  and it is noticed that as slip parameter γ  

increases velocity profile ( )f η′  decreases. Fig.(4) and Fig.(5) represents the effect of slip parameter γ  on  heat transfer 
in CST and PST cases respectively. The increasing values of slip parameterγ  results in increase of temperature of fluid.  
Fig. (6) and Fig. (7) represents the effect of Prandtl number Pr on the heat transfer in CST and PST cases respectively. 
From these plots it is evident that large values of Prandtl number results in decrease in temperature of the flow field.Since 
it is well known that the thermal boundary layer thickness is inversely proportional to the square root of Prandtl number, 
the decrease of temperature profile with  Pr is straightforward in oth cases. 
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