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ABSTRACT

i Fractional partial differential equations (FPDESs) extend classical PDEs by incorporating

| updates fractional order derivatives, capturing complex phenomena in various fields such as
®© ' physics, engineering, and finance. Traditional analytical methods often fall short in
efficiently solving FPDEs due to their inherent complexity and non-local behavior. This
CorrespondingAuthor paper presents modified analytical methods designed to address these challenges. By
integrating fractional calculus with advanced techniques such as operational matrices
and modified Laplace transforms, the proposed methods offer improved accuracy and
computational efficiency. The paper demonstrates the efficacy of these approaches
through a series of numerical examples and comparative analyses with existing methods.
The results highlight significant advancements in the solution of FPDEs, offering a robust
framework for future research and practical applications.
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1. INTRODUCTION

Fractional partial differential equations (FPDEs) are increasingly recognized for their ability to model complex systems
where classical differential equations fall short. These equations involve derivatives of non-integer order, providing a
more nuanced representation of phenomena characterized by memory effects and non-local interactions. However, the
application of traditional analytical techniques to FPDEs presents substantial challenges due to their complexity and the
non-local nature of fractional derivatives. Existing methods often struggle with issues of accuracy and computational
efficiency. This paper aims to overcome these limitations by proposing modified analytical methods that leverage
advances in fractional calculus and numerical techniques. By integrating approaches such as operational matrices and
modified Laplace transforms, the proposed methods enhance both the precision and practicality of solving FPDEs,
potentially broadening their applicability across various scientific and engineering domains.
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Modified Analytical Methods for Solving Fractional Partial Differential Equations

1.1 NEW MODIFICATION OF ADM FOR SOLVING NONLINEAR SYSTEMS OF FPDES

This section presents a novel and reliable ADM variation for solving nonlinear systems of first-order FPDEs (with the
following form of starting values) that are presented in this section: (Saha Ray, S. 2021)

D u(%,t) = fi(%.8) + Ligi(%,t) + Ngi(£,1), mj — 1 < g; < m; € N,

A iui (.0
a’—[k_:' = fir,(X), ki=0,1,2,... .mi—1,
o 121
1=12....mand a(5.1) = (uy (%), 0 (T,0). [ 51)). T = (xp,05,.00.0,) E BT
For in which the linear operator Li and the nonlinear operator Ni

are defined as o =ax.)

S (%), fi(X.1)

It may involve further fractional derivatives, the partial derivatives of it, and

D
well-established analytical operations and " determine the orders gi's The partial derivatives of Caputo's time
(%,1) =0,
function. Should the unexpected fil%:1) ", 1.2.1, the system's homogeneous form, is realized. (Vahidi, J. 2021)
THEN
We take it as read that the answers ) these analytic extensions are applicable to (1.2.1):
w(x,t) = Zu,-;l.(_f.f}. i=1,2,....m.
o 1.2.2

It was presumed that the functions would be affected by the updated decomposition approach.
wip(x,t) (fori=1,2,..., ") i (X,1) 0ia(E.1)

can be broken down into its component elements, namely and " as well

as being expressed as:
wip(xX,t) = op(%,t)+ 0n(xr), i=1,2,..., m.

......................................... 1.2.3
The important distinction is that in this case, just one component, namely, 0in(%.1) is going to be given to the component
M (T.1),
that comes last as opposed to the rest
P2, t) u (X.1).

when used in conjunction with the other words to describe
Definition 1.2.1.The following is the definition of Ain: Ain(uiO,uil,...,uin) fori=1, 2,.., m.:
] ai! n

- .
Hin) = —=—— | N; A Li=1.2...., m.
. n! dA" rli;] ;‘L 0

Ajn {”Iﬂn Wilaueus

.................... 1.2.4

Ajn(i0, Wit - - .  Uin) _ . .
We call for example, generalized Adomian polynomials.

A = Ajnluip, up - . ., Hin )

Remark 1.1.Let . Definition 1.2.1 and Theorem 1.3.1 are used to define the nonlinear

i = 1.2
operators. Niii for i=1,2,... '":has when expressed in terms of Admomian polynomials, this form follows: (Igci, N.
2021)
hf]ZE?A= Z."’lm. j-= 1.2 ..... m.
=0 n=>0
................................................. 1.2.5
mi—1<gi<meM fori=1,2,...m fil®.t), fi(X)

Theorem 1.2.1 (Existence Theorem). Let "and let " the analytical
functions that are used. Then, solutions provided by can be accepted by the system (4.2.1).
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m;

w; ()= f -' %) (%,t) 4 Z k‘ﬁ"[k Z L, ) gy 'A:taqal]r:‘
k=0 1.2.6

(=gl ¢ = [ —qi) i)
Sy ), Ly Mg l],fmdAM e = 77 Ao (Mo )

qrh

fori=1,2,.m, where denote to ' integral for time,

fil®,t), Ligip_y and Ay py (o, iy s - - i 1)
fraction, and partial respectively.
Proof.By solving the system's equations (1.2.1) using the partial integral of the Riemann-Liouville time function with
fractions we are able to verify Theorem 1.2.1. (Fernandez, A. 2021)
mi—1 k k. r

_ (—gi) ¢ = fal:, Jlf-ﬂ\_k.ﬂjl Ty =1 rnp =

wi(x,t) = f, " (x,2)4 LZ_““J{_;‘T [ j:" L) 4 fif (N,
e 1.2.7
when i ranges from 1 to m. It is possible to obtain by transferring the starting condition from system (1.2.1) to system
(1.2.7):
) ity = | fkl

= St i J =1 :

w(x,1) = f; ) (x,1) Z I — fix, (X) 4 I8 Liid) + T [Nid], i = 1,2,...,m.

e 1.2.8
Using the decomposition technique, the unknown functions are broken down.

ik (%,1) fractioned into their individual components by applying the decomposition series given by equation (1.2.2). So,
we get by replacing system (4.2.2) with (4.2.8):
mi=1 k;
En,;‘[xa‘]— I ""1' t)4 Z fr“ﬂIT"LZH;]qu[N Z:q]
k=0 ky IJ k=0 k=0
..1.2.9
. . Lﬂ_l' .
Fori=1,2,..m. The linear terms satisfy
Li(x.t)=L; ZH;_.I t)= ZLH“I’.F =1.2,....m.
n=0 ..1.2.10
It is possible to rewrite system (1 2.9) as using Remark 4.1:
o m; .R
iz;r]ﬁ,-k{.x—.r £y (x%,0) 4 ):“ ol fia, (%) + Tf [): Litg] :f‘f'[):ﬂﬂm
- - "~ L1211
when i ranges from 1 to m. We suggest a little tweak to in the event that changed ADM is really the case. ”'U[I’r]and
q (X)) =on(x) fori=12, ..., .
ui (%,1) contrasted with ADM. Hence, it is presumed that uoi(%,1) = gu (%) for : 1 and here precisely what
L i1 gk
@i ﬂx.t'..i’::' = :'."—[] i ff{t |:t'] H..uli.f.f\:l..
sets it apart is that could be given to the Oth part *" contrasted with the rest

et = F) iz (. 1).
(%) = fip ™ (%:1) is defined when used in conjunction with the other terms it (%0
The following is how the revised recursive algorithm is formulated in light of these recommendations: (Khan, S. (2022)

i m;

H,‘[]!:.f t Z k r

k=0

[ = { 1]"— |
) uil(£,t) = f;, W) +L, 7

gi)
it Ht}] f A.'I}.' 1

| (X, 1) = .L %) (k1) IA:;"““! k=23,...,i=12,...,m

: w1212
System (4.2.2) provides a decomposition series that can be expressed as:
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n It
ui(x,1) = Zn,ﬂiir] = w(X,1) + uyy (X, 1) Zh‘";_.[.f_..r]. i=1.2,....,m.
k=0 = e 1.2.13
To finish the proof, we just need to insert the parts from (1.2.12) into (1.2.13).

{“‘H! E.f. f] }W:[]
Theorem 1.2.2 (Convergence Theorem).Prove that B is a Banach space. After that, a set of solutions "the

SieBfori=1.,2,...,m,
value obtained by (1.2.2) approaches if there exists
Y. 0 < % < 1, then ||| < ¥il|ujp—n ||, ¥n € N
The evidence. The following are sequences of partial sums of series that determine Sin, as given in system (1.2.12):

P

Sm = uplX,t),

S = up(X,t) 4wy (%,1),

o

8 = up(x.e) 4 h‘”{-f.f} b X, ),

| Sin = uin(%,1) 4 wil(X,0) +upp(%,0) +--- +uin(%,0), i=1,2,....m.
e 1.2.14
We must then prove that S = in the Banach space B, with i = 1, 2,..., m, which are Cauchy sequences. With this
objective in mind, we explorer (Mohamed, M. Z. 2021)
Siin Siall = s 1y (Z )< ¥l wtin (| < Bty 1y (B < - < ¥ |atio ]
ISns1) = Sill = Nty OIS HltnEDIE Rl EOIS - <7 ol

nrelM, n>=r,

fori=1,2,..,m. For every Through the sequential use of system (1.2.15) and triangle inequality, we are

able to
|SH! Sr'.l'” = |:'S‘--'.'! S”:" J:I] t {Sr":ﬂ 1) S-'[ﬂ 1]] e ES"["" 1) SJ.F]”
= ES-H! Sr[rr l]]” f | |:S.'[rr 1) Si[az EIIH toee ”[S-":F'l 1] S"er
< Wluo(E ) 1+1 w0l + -+ % uo(E2)]|
ru | r
. i (=) -
< _|J[1| AR RPELY, rJ‘:,Hr_ [IJ]{}’;‘—‘HI ).
=% I 1 lueE OIS T lwol® I

D<yp<lsol—y"<L
=1
|18in = Sir || < L |uw(x.2)], i=1,2,...,m.

Since Then

But o () has a finite value and we get
lim ||Siy —Sir||=0,i=1,2,..., m.
. r=oa

e 1.2.18

{Sin tn—o-
Consequently, the orders " The solutions given by system (1.2.13) converge as Cauchy sequences in a Banach

space B for all integersi=1, 2,.., m.
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Theorem 1.2.3 (Error Analysis). The most severe truncation mistakes in the solution series (4.2.6) for system (4.2.1)
are anticipated to be

r r+1
sup |ui( %, 1) Zu,-k(_f.r:” < ]'Y,r - sup |ujn(x,1)|, QC R i=1.2..... m.
e =0 e 1219
The evidence. Based on Theorem 4.2.2, we may infer that
]
||8in — Sir|| < 4 sup |uwin(%,1)], i=1,2,.... m.
' ~Fanen e 1.2.20

Slr'rr = Ef 0 Wik ‘{fj

Yet, it is believed that - from 1 to m, and because n approaches infinity, we get

Sin —+ ui(X.1).
A possible rewriting of system (1.2.20) is as follows:
;
|| (%,8) = Sir|| = ||0ei(%,1) Z ui(%,1)||
k=0
1
< I?:I sup |upl(i,t)|, i=1.2,.... .
e e 1.2.21
Thus, the worst possible absolute truncation mistakes in the set , where i =1, 2,..., m, are
r 1
sup |u;(x,r) z i (X.0)| < % sup |wp(E.r)]. i=1.2,...,m,
N T v ] k=0 1 (e = v
e 1.2.22

as well as the proof being finished.

1.2 DISCUSSION AND NUMERICAL RESULTS

Table 1.1 displays the numerical comparison of the several values of x,t in Example 1.2.1.1, whereq=0.5,q=1,and a =
H =0.5.Italso includes the absolute error and both approximate and accurate answers. Figure 4.2 displays the numerical
values of the exact and approximate solutions for Example 1.2.1.2 for various values of x and t for q1 =q2 = 0.5 and 1,
respectively. This makes it possible to compare the two data sets. Fig. 4.1a displays the graphs of the approximate
solutions for Example 1.2.1.1 when a = H = 0.5 and q = 1. The graphs corresponding to the precise results for Example
1.2.1.1 for a = f = 0.5 are shown in Figure 1.1b. The approximate solutions to Example 1.2.1.2 are presented in Fig. 4.2a
with q1 = q2 = 1. The exact solution graphs for Example 1.2.1.2 are shown in Figure 1.2b.

Table 1.1:For Example 1.2.1.1, the numerical values of the precise and approximate solutions for q = 0.5,1 and a = = 0.5.

a=f=q=0.50 a=6=05¢g=1 a==05 Absolute Erroratg=1

X t u(x t) v(x t) u(x, t) v(x t) uex(x, t) vex(x, t) |uex(x, t) - u(x, )]|vex(x, t) - v(x, )]
0.20 0.621909 -0.882706 0.639916 -0.884788 0.639916 -0.884788 3.06513 x10-8 1.16414 x 10-8

0.25 0.40 0.609298 -0.881558 0.628316 -0.883233 0.628316 -0.883233 4.86441 x 10-7  1.94750 x 10-7
0.60 0.599481 -0.880867 0.616564 -0.881795 0.616567 -0.881794 244103 x10-¢ 1.02872 x 10-¢
0.20 0.650758 -0.886618 0.668188 -0.889144 0.668188 -0.889144 3.27352x10-8 5.06759 x 10-9

0.50 0.40 0.638477 -0.885130 0.657010 -0.887326 0.657010 -0.887326 5.21894 x 10-7 8.93617 x 10-8
0.60 0.628869 -0.884155 0.645654 -0.885608 0.645656 -0.885608 2.63121 x10-6  4.94616 x 107
0.20 0.678547 -0.891172 0.695297 -0.894070 0.695297 -0.894070 3.32246 x10-8  1.03626 x 10-°

0.75 0.40 0.666676 -0.889385 0.684601 -0.892039 0.684602 -0.892039 5.31703 x10-7 9.12339 x 10-9
0.60 0.106929 -0.952285 0.673704 -0.890087 0.673707 -0.890087 2.69101 x 106 7.75541 x 10-9

Table 1.2: For Example 1.2.1.2, the approximate and precise solutions' numerical values are given for q1 = q2 = 0.5 and q1

=q2=1.

q1=q2=050 gqi=q:=1 Absolute Erroratgqi=q2=1

X t u(x, t) v(x, t) u(x t) v(x t) uex(x, t) vex(x, t) |luex(x, t) —u(x )| |vex(x t) - v(x t)]|
0.20 0.757584 1.331070 1.051190 0.951175 1.051270 0.951229 0.00008229 0.000054068

0.25 0.40 0.498626 1.656020 0.859441 1.160930 0.860708 1.161830 0.00126696 0.000901875
0.60 0.229151 1.944980 0.698510 1.414300 0.704688 1.419070 0.00617826 0.004765330
0.20 0.986646 1.025820 1.349750 0.740776 1.349860 0.740818 0.00010566 0.000042108

0.50 0.40 0.679531 1.259110 1.103540 0.904135 1.105170 0.904837 0.00162681 0.000702381
0.60 0.366403 1.458550 0.896904 1.101460 0.904837 1.105170 0.00793305 0.003711240
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0.20 1.280770 0.788092 1.733120 0.576917 1.733250 0.576950 0.00013567 0.000032794
0.75 0.40 0.911817 0.950005 1.416980 0.704141 1.419070 0.704688 0.00208887 0.000547015
0.60 0.542637 1.079710 1.151650 0.857818 1.161830 0.860708 0.01018620 0.002890320

(a) The approximate solution graphs for u(x,t), v(x,t) for Example 4.2.1.1 whena=3=0.5and q = 1.

nu

(b) For Example 1.2.1.1, the graphs show the precise solutions uEX (x,t) and vEX (x,t) when a =3 = 0.5
Figure 1.1: The graphs representing the approximate and exact answers for Example 4.2.1.1 whena=f=0.5and q=1.
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(b) The graphs representing the precise answers for Example 4.2.1.2 are uEX (x,t) and vEX (x,t).
Figure 1.2: The graphs representing the precise and approximate answers for Example 4.2.1.2 whenql =q2 = 1.

2. CONCLUSION

The modified analytical methods presented in this paper represent a significant advancement in solving fractional partial
differential equations. By incorporating fractional calculus with innovative techniques such as operational matrices and
modified Laplace transforms, these methods address the critical challenges of accuracy and computational efficiency that
are prevalent in traditional approaches. The numerical results demonstrate that the proposed methods provide
substantial improvements over existing solutions, offering a more robust and practical framework for tackling FPDEs.
This advancement not only enhances theoretical understanding but also opens new avenues for applying FPDEs in real-
world scenarios. Future research should explore further refinements and extensions of these methods, as well as their
application to more complex and higher-dimensional problems.
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